It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Untreated coking effluent presents a great challenge for sustainable development of the steel industry and environment preservation. In this study, an internal micro-electrolysis method using Fe/C materials was employed for pretreatment of real coking wastewater with high mass concentration. The Fe/C materials were prepared by Fe powder and graphite powder; and the characteristics of surface morphology, structure, composition of the synthesized materials were examined by Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS). The effects of factors namely dosage of Fe/C material, treatment time, initial pH and temperature were investigated via chemical oxygen demand (COD) and phenol removal efficiencies. Optimal treatment efficiency was attained at pH of 4, Fe/C dosage of 40 g/L, treatment time of 360 minutes and temperature of 25°C. After the internal electrolysis process, the values of COD, BOD5, and phenol of the wastewater were 6500, 4850 and 0.1 mg/L, respectively.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute of Chemistry and Materials, 17 Hoang Sam, Cau Giay, Hanoi, Vietnam
2 Thai Nguyen University of Education, Thai Nguyen University, 20 Luong Ngoc Quyen, Thai Nguyen City, Vietnam
3 NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; Center of Excellence for Green Energy and Environmental Nanomaterials, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam