It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Installation of fluorine into pharmaceutically relevant molecules plays a vital role in their properties of biology or medicinal chemistry. Direct difunctionalization of alkenes and 1,3-dienes to achieve fluorinated compounds through transition-metal catalysis is challenging, due to the facile β-H elimination from the Csp3‒[M] intermediate. Here we report a cobalt-catalyzed regioselective difluoroalkylarylation of both activated and unactivated alkenes with solid arylzinc pivalates and difluoroalkyl bromides through a cascade Csp3‒Csp3/Csp3‒Csp2 bond formation under mild reaction conditions. Indeed, a wide range of functional groups on difluoroalkyl bromides, olefins, 1,3-dienes as well as (hetero)arylzinc pivalates are well tolerated by the cobalt-catalyst, thus furnishing three-component coupling products in good yields and with high regio- and diastereoselectivity. Kinetic experiments comparing arylzinc pivalates and conventional arylzinc halides highlight the unique reactivity of these organozinc pivalates. Mechanistic studies strongly support that the reaction involves direct halogen atom abstraction via single electron transfer to difluoroalkyl bromides from the in situ formed cobalt(I) species, thus realizing a Co(I)/Co(II)/Co(III) catalytic cycle.
Transition metal-catalyzed regioselective difunctionalizations of alkenes with two different functional groups are useful for preparing organic compounds, but the construction of two new C–C bonds is challenging. Here, the authors report cobalt-catalyzed regioselective difluoroalkylarylation of alkenes with solid arylzinc pivalates and difluoroalkyl bromides, through a cascade Csp3 ‒Csp3/Csp3 ‒Csp2 bond formation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Soochow University, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Suzhou, People’s Republic of China (GRID:grid.263761.7) (ISNI:0000 0001 0198 0694)
2 Wuhan University, College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan, People’s Republic of China (GRID:grid.49470.3e) (ISNI:0000 0001 2331 6153)