It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We performed a time-resolved spectroscopic study of the VUV/UV scintillation of gaseous argon as a function of pressure and electric field, by means of a wavelength sensitive detector operated with different radioactive sources. Our work conveys new evidence of distinctive features of the argon light which are in contrast with the general assumption that, for particle detection purposes, the scintillation can be considered to be largely monochromatic at 128 nm (second continuum). The wavelength and time-resolved analysis of the photon emission reveal that the dominant component of the argon scintillation during the first tens of ns is in the range [160, 325] nm. This light is consistent with the third continuum emission from highly charged argon ions/molecules. This component of the scintillation is field-independent up to 25 V/cm/bar and shows a very mild dependence with pressure in the range [1, 16] bar. The dynamics of the second continuum emission is dominated by the excimer formation time, whose variation as a function of pressure has been measured. Additionally, the time and pressure-dependent features of electron-ion recombination, in the second continuum band, have been measured. This study opens new paths toward a novel particle identification technique based on the spectral information of the noble-elements scintillation light.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Division de Física de Particulas, CIEMAT, Madrid, Spain (GRID:grid.420019.e) (ISNI:0000 0001 1959 5823)
2 IGFAE, Santiago de Compostela, Spain (GRID:grid.420019.e)