It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The gonadotropin-releasing hormone (GnRH) antagonist protocol for in vitro fertilization (IVF) often leads to lower pregnancy rates compared to the GnRH agonist protocol. Decreased endometrial receptivity is one reason for the lower success rate, but the mechanisms underlying this phenomenon remain poorly understood. The S100 calcium protein P (S100P) is a biomarker for endometrial receptivity. Both GnRH antagonist and S100P are involved in mediating cell apoptosis. However, the involvement of S100P in reduced endometrial receptivity during the GnRH antagonist protocol remains unclear.
Methods
Endometrial tissue was collected at the time of implantation window from patients undergoing the GnRH agonist (GnRH-a) or GnRH antagonist (GnRH-ant) protocols, as well as from patients on their natural cycles. Endometrial cell apoptosis and expression levels of S100P, HOXA10, Bax, and Bcl-2 were assessed. Ishikawa cells were cultured to evaluate the effects that GnRH antagonist exposure or S100P up- or down- regulation had on apoptosis.
Results
Endometrial tissue from patients in the GnRH-ant group showed elevated apoptosis and decreased expression of the anti-apoptotic marker Bcl-2. In addition, endometrial expression of S100P was significantly reduced in the GnRH-ant group, and expression of HOXA10 was lower. Immunofluorescence colocalization analysis revealed that S100P was mainly distributed in the epithelium. In vitro experiments showed that knockdown of S100P in Ishikawa cells induced apoptosis, decreased expression of Bcl-2, while overexpression of S100P caused the opposite effects and decreased expression of Bax. Furthermore, endometrial epithelial cells exposed to GnRH antagonist expressed lower levels of S100P and Bcl-2, increased expression of Bax, and had higher rates of apoptosis. The increased apoptosis induced by GnRH antagonist treatment could be rescued by overexpression of S100P.
Conclusions
We found that GnRH antagonist treatment induced endometrial epithelial cell apoptosis by down-regulating S100P, which was detrimental to endometrial receptivity. These results further define a mechanistic role for S100P in contributing to endometrial apoptosis during GnRH antagonist treatment, and suggest that S100P is a potential clinical target to improve the success of IVF using the GnRH antagonist protocol.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer