Full text

Turn on search term navigation

© 2021 Andrade-Lotero, Goldstone. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Often members of a group benefit from dividing the group’s task into separate components, where each member specializes their role so as to accomplish only one of the components. While this division of labor phenomenon has been observed with respect to both manual and cognitive labor, there is no clear understanding of the cognitive mechanisms allowing for its emergence, especially when there are multiple divisions possible and communication is limited. Indeed, maximization of expected utility often does not differentiate between alternative ways in which individuals could divide labor. We developed an iterative two-person game in which there are multiple ways of dividing labor, but in which it is not possible to explicitly negotiate a division. We implemented the game both as a human experimental task and as a computational model. Our results show that the majority of human dyads can finish the game with an efficient division of labor. Moreover, we fitted our computational model to the behavioral data, which allowed us to explain how the perceived similarity between a player’s actions and the task’s focal points guided the players’ choices from one round to the other, thus bridging the group dynamics and its underlying cognitive process. Potential applications of this model outside cognitive science include the improvement of cooperation in human groups, multi-agent systems, as well as human-robot collaboration.

Details

Title
Self-organized division of cognitive labor
Author
Andrade-Lotero, Edgar; Goldstone, Robert L
First page
e0254532
Section
Research Article
Publication year
2021
Publication date
Jul 2021
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2553219111
Copyright
© 2021 Andrade-Lotero, Goldstone. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.