It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Suboccipital decompression with duraplasty is a widely accepted method for treating patients with Chiari malformation type I. However, important details of the duraplasty technique are still controversial. This retrospective study analyzes clinical and radiological outcomes after surgery depending upon the type of graft and methods of graft fixation. Seventy consecutive decompressions with duraplasty were analyzed. Two types of grafts, nonautologous (Non-AutoG; 60.0%) and autologous (AutoG; 40.0%), and two methods of graft fixation, suturing (S; 67.1%) and gluing (G; 32.9%), were used in four different combinations: (Non-AutoG+S: 31.4%; Non-AutoG+G: 28.6%; AutoG+S: 35.7%; AutoG+G: 4.3%) according to surgeon preference. The mean follow-up was 63.4 months. According to gestalt and Chicago Chiari Outcome Scales, satisfactory results were obtained in 72.9% and 78.6% of cases, respectively, in the long term. The outcomes were not related to the kind of graft (p = 0.44), fixation method (p = 0.89) or duraplasty pattern (p = 0.32). Decreased syringomyelia was observed in 88.9% of cases, and no associations with the kind of graft (p = 0.84), fixation method (p = 1) or duraplasty pattern were found (p = 0.96). Pseudomeningocele occurred 5 times more often in the Non-AutoG group than in the AutoG group (52.4% vs. 10.7%; p < 0.05), whereas their formations were not related to the fixation method (p = 0.34). Three cases (12.0%) required reoperation with reduraplasty. Autologous and nonautologous dural grafts can be sutured or glued with similar clinical results; however, the use of nonautologous grafts is linked with a much higher risk of pseudomeningocele formation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Medical University of Warsaw, Department of Neurosurgery, Warsaw, Poland (GRID:grid.13339.3b) (ISNI:0000000113287408)
2 Nicolaus Copernicus University in Torun, Division of Ergonomics and Exercise Physiology, Department of Hygiene, Epidemiology, Ergonomics and Postgraduate Training, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland (GRID:grid.5374.5) (ISNI:0000 0001 0943 6490)