It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Existing software intelligent defect classification approaches do not consider radar characters and prior statistics information. Thus, when applying these appaoraches into radar software testing and validation, the precision rate and recall rate of defect classification are poor and have effect on the reuse effectiveness of software defects. To solve this problem, a new intelligent defect classification approach based on the latent Dirichlet allocation (LDA) topic model is proposed for radar software in this paper. The proposed approach includes the defect text segmentation algorithm based on the dictionary of radar domain, the modified LDA model combining radar software requirement, and the top acquisition and classification approach of radar software defect based on the modified LDA model. The proposed approach is applied on the typical radar software defects to validate the effectiveness and applicability. The application results illustrate that the prediction precison rate and recall rate of the poposed approach are improved up to 15 ~ 20% compared with the other defect classification approaches. Thus, the proposed approach can be applied in the segmentation and classification of radar software defects effectively to improve the identifying adequacy of the defects in radar software.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Nanjing Research Institute of Electronics Technology, Nanjing, China
2 Beihang University, School of Software, Beijing, China (GRID:grid.64939.31) (ISNI:0000 0000 9999 1211)
3 Beihang University, School of Reliability and Systems Engineering, Beijing, China (GRID:grid.64939.31) (ISNI:0000 0000 9999 1211)
4 Nanjing Research Institute of Electronics Technology, Nanjing, China (GRID:grid.64939.31)