It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper tackles the problem of endogenous link prediction for knowledge base completion. Knowledge bases can be represented as directed graphs whose nodes correspond to entities and edges to relationships. Previous attempts either consist of powerful systems with high capacity to model complex connectivity patterns, which unfortunately usually end up overfitting on rare relationships, or in approaches that trade capacity for simplicity in order to fairly model all relationships, frequent or not. In this paper, we propose Tatec, a happy medium obtained by complementing a high-capacity model with a simpler one, both pre-trained separately and then combined. We present several variants of this model with different kinds of regularization and combination strategies and show that this approach outperforms existing methods on different types of relationships by achieving state-of-the-art results on four benchmarks of the literature.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer