Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Chagas’ disease is a debilitating and life-threatening disease endemic of the Americas, although it currently affects about six to seven million people around the world. The triatomines, also known as kissing bugs, are blood-feeding insects that play a key role in the transmission of Chagas’ disease since they are the vectors of the parasite Trypanosoma cruzi, the causative agent of the illness. On the other hand, the hemocytes are the cells present in the circulatory system of insects and other invertebrates. These cells are comparable to the white blood cells of vertebrates and fulfill vital functions in coagulation and defense against pathogens. The classification of hemocytes is mainly based in their cell shape, which is technically challenging to assess, and the authors have not always agreed upon this subject. In this study we combined different techniques to classify the hemocytes of the kissing bug Dipetalogaster maxima in a juvenile stage of development. We characterized the hemocytes in five types, including plasmatocytes, granulocytes, prohemocytes, adipohemocytes and oenocytes. These findings contribute to the understanding of insect and triatomine physiology and can be applied to unravel basic aspects of insect immune responses, coagulation cascades and endocrine processes.

Abstract

Hemocytes, the cells present in the hemolymph of insects and other invertebrates, perform several physiological functions, including innate immunity. The current classification of hemocyte types is based mostly on morphological features; however, divergences have emerged among specialists in triatomines, the insect vectors of Chagas’ disease (Hemiptera: Reduviidae). Here, we have combined technical approaches in order to characterize the hemocytes from fifth instar nymphs of the triatomine Dipetalogaster maxima. Moreover, in this work we describe, for the first time, the ultrastructural features of D. maxima hemocytes. Using phase contrast microscopy of fresh preparations, five hemocyte populations were identified and further characterized by immunofluorescence, flow cytometry and transmission electron microscopy. The plasmatocytes and the granulocytes were the most abundant cell types, although prohemocytes, adipohemocytes and oenocytes were also found. This work sheds light on a controversial aspect of triatomine cell biology and physiology setting the basis for future in-depth studies directed to address hemocyte classification using non-microscopy-based markers.

Details

Title
Morphological and Ultrastructural Characterization of Hemocytes in an Insect Model, the Hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae)
Author
Moyetta, Natalia R 1 ; Ramos, Fabián O 1 ; Leyria, Jimena 1 ; Canavoso, Lilián E 1 ; Fruttero, Leonardo L 1   VIAFID ORCID Logo 

 Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; [email protected] (N.R.M.); [email protected] (F.O.R.); [email protected] (J.L.); [email protected] (L.E.C.); Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina 
First page
640
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20754450
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2554570603
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.