Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The paper structure of historical prints is sort of a unique fingerprint. Paper with the same origin shows similar chain line distances. As the manual measurement of chain line distances is time consuming, the automatic detection of chain lines is beneficial. We propose an end-to-end trainable deep learning method for segmentation and parameterization of chain lines in transmitted light images of German prints from the 16th Century. We trained a conditional generative adversarial network with a multitask loss for line segmentation and line parameterization. We formulated a fully differentiable pipeline for line coordinates’ estimation that consists of line segmentation, horizontal line alignment, and 2D Fourier filtering of line segments, line region proposals, and differentiable line fitting. We created a dataset of high-resolution transmitted light images of historical prints with manual line coordinate annotations. Our method shows superior qualitative and quantitative chain line detection results with high accuracy and reliability on our historical dataset in comparison to competing methods. Further, we demonstrated that our method achieves a low error of less than 0.7 mm in comparison to manually measured chain line distances.

Details

Title
ChainLineNet: Deep-Learning-Based Segmentation and Parameterization of Chain Lines in Historical Prints
Author
Sindel, Aline 1 ; Klinke, Thomas 2 ; Maier, Andreas 1   VIAFID ORCID Logo  ; Christlein, Vincent 1 

 Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany; [email protected] (A.M.); [email protected] (V.C.) 
 Cologne Institute of Conservation Sciences (CICS), Technische Hochschule Köln, 50678 Köln, Germany; [email protected] 
First page
120
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
2313433X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2554575859
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.