Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A nanoparticle’s shape and size determine its optical properties. Nanorods are nanoparticles that have double absorption bands associated to surface plasmon oscillations along their two main axes. In this work, we analize the optical response of gold nanorods with numerical simulations and spectral absorption measurements to evaluate their local field enhancement—which is key for surface-enhanced Raman spectroscopic (SERS) applications. Our experimental results are in good agreement with finite element method (FEM) simulations for the spectral optical absorption of the nanoparticles. We also observed a strong dependence of the optical properties of gold nanorods on their geometrical dimension and shape. Our numerical simulations helped us reveal the importance of the nanorods’ morphology generated during the synthesis stage in the evaluation of absorption and local field enhancement. The application of these gold nanorods in surface-enhancement Raman spectroscopy is analyzed numerically, and results in a 5.8×104 amplification factor when comparing the values obtained for the nanorod deposited on a dielectric substrate compared to the nanorod immersed in water.

Details

Title
Computational and Experimental Analysis of Gold Nanorods in Terms of Their Morphology: Spectral Absorption and Local Field Enhancement
Author
Núñez-Leyva, Juan Manuel 1   VIAFID ORCID Logo  ; Kolosovas-Machuca, Eleazar Samuel 2   VIAFID ORCID Logo  ; Sánchez, John 2   VIAFID ORCID Logo  ; Guevara, Edgar 2   VIAFID ORCID Logo  ; Cuadrado, Alexander 3   VIAFID ORCID Logo  ; Alda, Javier 4   VIAFID ORCID Logo  ; González, Francisco Javier 2   VIAFID ORCID Logo 

 Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 550 Sierra Leona Ave, San Luis Potosí 78210, Mexico; [email protected] (J.M.N.-L.); [email protected] (E.S.K.-M.); [email protected] (J.S.); [email protected] (E.G.); [email protected] (F.J.G.); Doctorado Institucional en Ingeniería y Ciencia de Materiales (DICIM-UASLP), Universidad Autónoma de San Luis Potosí, 550 Sierra Leona Ave, San Luis Potosí 78210, Mexico 
 Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 550 Sierra Leona Ave, San Luis Potosí 78210, Mexico; [email protected] (J.M.N.-L.); [email protected] (E.S.K.-M.); [email protected] (J.S.); [email protected] (E.G.); [email protected] (F.J.G.) 
 Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/ Tulipán s/n, Móstoles, 28933 Madrid, Spain; [email protected] 
 Applied Optics Complutense Group, Faculty of Optics and Optometry, University Complutense of Madrid, 118 Arcos de Jalón Ave, 28037 Madrid, Spain 
First page
1696
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2554787876
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.