Full text

Turn on search term navigation

Copyright © 2021 Fengjiao Guan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Craniocerebral injury has been a research focus in the field of injury biomechanics. Although experimental endeavors have made certain progress in characterizing the material behavior of the brain, the temperature dependency of brain mechanics appears to be inconclusive thus far. To partially address this knowledge gap, the current study measured the brain material behavior via unconstrained uniaxial compression tests under low strain rate (0.0083 s-1) and high strain rate (0.83 s-1) at four different sample temperatures (13°C, 20°C, 27°C, and 37°C). Each group has 9~12 samples. One-way analysis of variance method was used to study the influence of sample temperature on engineering stress. The results show that the effect of sample temperature on the mechanical properties of brain tissue is significant under the high strain rate, especially at low temperature (13°C), in which the hardening of the brain tissue is very obvious. At the low strain rate, no temperature dependency of brain mechanics is noted. Therefore, the current results highlight that the temperature of the brain sample should be ensured to be in accordance with the living subject when studying the biomechanical response of living tissue.

Details

Title
Study on the Effect of Sample Temperature on the Uniaxial Compressive Mechanical Properties of the Brain Tissue
Author
Guan, Fengjiao 1 ; Zhang, Guanjun 2   VIAFID ORCID Logo  ; Jia, Xiaohang 2 ; Deng, Xiaopeng 2 

 Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China 
 State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China 
Editor
C R Torres-San Miguel
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
11762322
e-ISSN
17542103
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2554894667
Copyright
Copyright © 2021 Fengjiao Guan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/