It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Gait, the style of human walking, has been studied as a behavioral characteristic of an individual. Several studies have utilized gait to identify individuals with the aid of machine learning and computer vision techniques. However, there is a lack of studies on the nature of gait, such as the identification power or the uniqueness. This study aims to quantify the uniqueness of gait in a cohort. Three-dimensional full-body joint kinematics were obtained during normal walking trials from 488 subjects using a motion capture system. The joint angles of the gait cycle were converted into gait vectors. Four gait vectors were obtained from each subject, and all the gait vectors were pooled together. Two gait vectors were randomly selected from the pool and tested if they could be accurately classified if they were from the same person or not. The gait from the cohort was classified with an accuracy of 99.71% using the support vector machine with a radial basis function kernel as a classifier. Gait of a person is as unique as his/her facial motion and finger impedance, but not as unique as fingerprints.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Korea Advanced Institute of Science and Technology, Department of Mechanical Engineering, Daejeon, Republic of Korea (GRID:grid.37172.30) (ISNI:0000 0001 2292 0500)
2 Seoul National University Bundang Hospital, Department of Orthopedic Surgery, Seongnam, Republic of Korea (GRID:grid.412480.b) (ISNI:0000 0004 0647 3378)