Abstract

l-Cysteine coated zinc oxide (ZnO) nano hollow spheres were prepared as a potent drug delivery agent to eradicate Salmonella enterica serovar Typhimurium (S. typhimurium). The ZnO nano hollow spheres were synthesized by following the environmentally-friendly trisodium citrate assisted method and l-cysteine (L-Cys) conjugate with its surface. ZnO/L-Cys@CFX nanocarrier drug has been fabricated by incorporating ceftizoxime with L-Cys coated ZnO nano hollow spheres and characterized using different techniques such as scanning electron microscope (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR), and X-ray diffraction (XRD) etc. Furthermore, the drug-loading and encapsulation efficiency at different pH levels was measured using UV–vis spectrometer and optimized. A control and gradual manner of pH-sensitive release profile was found after investigating the release profile of CFX from the carrier drug. The antibacterial activity of ZnO/L-Cys@CFX and CFX were evaluated through the agar disc diffusion method and the broth dilution method, which indicate the antibacterial properties of antibiotics enhance after conjugating. Surprisingly, the ZnO/L-Cys@CFX exhibits a minimum inhibitory concentration (MIC) of 5 µg/ml against S. typhimurium is lower than CFX (20 µg/ml) itself. These results indicate the nanocarrier can reduce the amount of CFX dosed to eradicate S. typhimurium.

Details

Title
Ceftizoxime loaded ZnO/l-cysteine based an advanced nanocarrier drug for growth inhibition of Salmonella typhimurium
Author
Bacchu, M S 1 ; Ali, M R 1 ; Setu M A A 2 ; Akter, S 2 ; Khan M Z H 1 

 Jashore University of Science and Technology, Department of Chemical Engineering, Jashore, Bangladesh; Jashore University of Science and Technology, Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore, Bangladesh 
 Jashore University of Science and Technology, Department of Microbiology, Jashore, Bangladesh 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2556553375
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.