It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Ni-rich layered materials have been regarded as competitive candidates for advanced lithium-ion batteries due to their high energy density, relatively low cost and environmentally-friendly nature. However, they suffer from serious degradation of cycling performance after exposing to air during their storage. Here we selected LiNi0.8Co0.1Mn0.1O2 as a typical Ni-rich positive material to study the influence upon exposure to ambient air on surface chemical composition and electrochemical performance. TEM confirms the existence of amorphous surface layer after contacting with atmosphere and the thickness is about 3-4 nm. The fresh LiNi0.8Co0.1Mn0.1O2 sample has capacity retention of 94.6% and 93.3% after 50 cycles at 0.2C and 1C, respectively, comparing to the 91.7% and 82.4% of the exposed sample. The charge-discharge curves and electrochemical impedance spectra indicate that exposure to air lead to increased impedance and polarization, which seriously affects LiNi0.8Co0.1Mn0.1O2 cycling properties. So, it is very important for Ni-rich cathode materials without contacting with atmosphere directly.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
2 School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China; National Development Center of High Technology Green Materials, Beijing, 100081, China; Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China