Full text

Turn on search term navigation

Copyright © 2021 Xin Huang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Ultra-wideband (UWB) pulse signal has an extremely narrow pulse width and wide frequency bandwidth, which overlaps with the operating frequency band of Global Position System (GPS) receivers, posing a potential threat to their performance. In response to this problem, through mathematical analysis and software simulation, the effects of UWB pulse signal under time-hopping-pulse position modulation (TH-PPM) on the performance of GPS receivers were studied. First, the expression and waveform of the UWB pulse signal were analyzed in the time-frequency domain, and it is concluded that the pulse repetition frequency (PRF) mainly affects the discrete spectrum of the UWB signal and the TH code period mainly affects the continuous spectrum. On this basis, the simulation on the power spectral density (PSD) of GPS signal and UWB signal under different pulse parameters was represented, from which a conclusion can be drawn that the PRF is the main factor impacting the PSD of the GPS signal. Furthermore, this paper analyzed the degradation of GPS receiver equivalent carrier-to-noise ratio (C/N0) and C/A code demodulation bit error rate (BER) under UWB interference, which are the crucial evaluating indicators of GPS signal quality. Eventually, we theoretically calculated the minimum interference level of the UWB interference signal to the GPS receiver, providing a theoretical reference for reducing the interference effects of UWB pulse signal on the performance of GPS receivers.

Details

Title
Simulation of Interference Effects of UWB Pulse Signal to the GPS Receiver
Author
Huang, Xin 1   VIAFID ORCID Logo  ; Chen, Yazhou 1   VIAFID ORCID Logo  ; Wang, Yuming 1   VIAFID ORCID Logo 

 Army Engineering University, Shijiazhuang Campus, National Key Laboratory on Electromagnetic Environment Effects, Shijiazhuang 050000, China 
Editor
Shiping Wen
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
10260226
e-ISSN
1607887X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2557141159
Copyright
Copyright © 2021 Xin Huang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/