Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Electronic packaging materials with high thermal conductivity and suitable viscosity are necessary in the manufacturing of highly integrated electronic devices for efficient heat dissipation during operation. This study looked at the effect of boron nitride (BN) platelets on the rheology and thermal conductivity of composites based on alumina (Al2O3) and epoxy resin (EP) for the potential application as electronic packaging. The viscosity and thermal conductivity of the composite were increased upon increasing filler content. Furthermore, thermal conductivity of the BN/Al2O3/EP was much higher than that of Al2O3/EP at almost the same filler loadings. These unique properties resulted from the high thermal conductivity of the BN and the synergistic effect of the spherical and plate shapes of these two fillers. The orientation of BN platelets can be controlled by adjusting their loading to facilitate the formation of higher thermally conductive pathways. The optimal content of the BN in the Al2O3/EP composites was confirmed to be 5.3 vol %, along with the maximum thermal conductivity of 4.4 W/(m·K).

Details

Title
Rheological Properties and Thermal Conductivity of Epoxy Resins Filled with a Mixture of Alumina and Boron Nitride
Author
Van-Dung, Mai 1 ; Lee, Dae-Il 1 ; Jun-Hong, Park 2 ; Dai-Soo, Lee 1   VIAFID ORCID Logo 

 Division of Semiconductor and Chemical Engineering, Chonbuk National University, Baekjedaero 567, Deokjin-gu, Jeonju, Chonbuk 54896, Korea 
 R & D Center, Lotte Advanced Materials, Sandan-ro 334-27, Yeosu 59616, Korea 
First page
597
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2557228310
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.