It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Ethylenediaminetetraacetic acid (EDTA) has increasing potential as an environmentally hazardous material. Although EDTA exhibits relatively low acute toxicity, it has been found to be cytotoxic and weakly genotoxic in laboratory animals. In addition, oral exposures can cause reproductive and developmental effects. EDTA is commonly used in wood industry, pulp and paper industry, textile industry, cement industry and food industry. It is also widely used in laundry applications in order to reduce the water hardness and in many cleaning solutions.
Due to chemical properties of EDTA (polarity, relatively good solubility in water and chelating ability towards metal ions) it cannot be efficiently removed on common water treatment plants. As a result, the EDTA can be observed in the aquifer downstream near the outputs from water treatment plants of larger industrial entities. Therefore, the reliable monitoring of EDTA in water samples is of great importance. Commonly, the chromatographic methods are used for EDTA analysis with dominance of liquid chromatography coupled with UV-VIS or MS detectors. However, these methods suffer often from the lack of sensitivity towards EDTA at ppt levels. The combination of gas chromatography with high resolution MS can offer significantly lower detection limits (units of ug/l) as well as powerful identification tool. However, the derivatization of EDTA is required when GC-MS is being used. In addition, according to the Czech standard for EDTA determination the Programmed Temperature Vaporising (PTV) injector or cool on- column injection are recommended. In our paper we report on the GC-MS method development for determination of EDTA in water by using traditional split/splitless injector. We compare the external and internal standard methods of EDTA quantification for several different internal standards. The developed method was applied to analysis EDTA in real aqueous samples.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Faculty of Environment, University of Jan Evangelista Purkyne, KralovaVysina 7, 400 96 Usti nad Labem, Czech Republic
2 Faculty of Science, University of Jan Evangelista Purkyne, Ceske Mladeze 8, 400 96 Usti nad Labem, Czech Republic