It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
When conductive and anticorrosive coatings are applied on the surface of reinforcing bars, electrochemical protection measures can be taken when the construction need secondary maintenance. Because graphene is a sp2 hybrid honeycomb structure, higher conductivity can be obtained by adding a small amount of graphene in the coating. In this paper, graphene-based conductive anticorrosive coatings were prepared with mixed conductive fillers (acetylene carbon black, conductive carbon black, graphite, graphene and zinc powder). The conductive mechanism was determined by studying the effects of conductive properties on the change of the content of different conductive fillers and analyzing the microstructural characteristics of conductive coatings with XRD, SEM, TEM and Raman spectroscopy tests. The results show that the conductivity of mixed fillers with different shapes in coatings is better than that of single filler in coatings when the filler content is the same. Because of the flexible structure and thin layer of graphene, the isolated fillers and conductive paths in different areas of the coatings can be connected with it and the conductive efficiency can be improved. The conductive paths are formed by the contact among conductive fillers in the coatings. Finally, the conductive mechanism model of graphene conductive and anticorrosive coatings was established.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Nanjing Hydraulic Research Institute, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, Jiangsu, 210029, China.
2 Zhangjiagang Tianyuan Painting Co., Ltd.Suzhou, Jiangsu, 215616, China.