Content area

Abstract

The production of nanomaterials for biomedical research and applications increases exponentially. Interestingly, there is an increase in the use of nanoparticles in pharmaceutical sciences for diagnosis and treatment purposes, and therefore, nano-toxicity becomes one of the major role aspects in the future of pharmaceutical nanotechnology. This study focused on discerning and identifying the main variables that govern a group of metal oxide nanoparticles’ toxicity in human keratinous cells (HaCaT), combining computational simulation and semiempirical calculations with the available experimental data allowed revealing and explaining the nanoparticle toxicity for the corresponding cell line, through the development and validation of an interpretive nano-QSAR model with acceptable statistical quality by applying a multivariate linear regression with a coupled genetic algorithm. This function included only two descriptors, orthogonal to each other: the enthalpy of a standard formation of metal oxide nanoclusterΔHfc and the absolute value of Fermi energy from the clusterϵFermic.The values of statistical indices obtained for this model showed its quality and robustness, for example, R2 = 0.90; Qcv2 = 0.86 and F = 37.15. This study demonstrated the need to use quantum-mechanical descriptors to explain the toxicity of metal oxide nanoparticles, capable of characterizing the electronic state of nanostructures. Regularization methods based on LASSO and Ridge regression have been employed in the model selection and validation. Furthermore, we propose a mechanism for toxicological effects applicable to a relevant group of nanoparticles, as well as their generalization to other toxicity studies not available in the literature, with potential nanopharmaceutical applications.

Details

Title
Quantum mechanics descriptors in a nano-QSAR model to predict metal oxide nanoparticles toxicity in human keratinous cells
Author
Peláez, Sifonte Eliecer 1 ; Castro-Smirnov, Fidel Antonio 2   VIAFID ORCID Logo  ; Jimenez Argenis Adrian Soutelo 3 ; Diez Héctor Raúl González 2 ; Martínez, Fernando Guzmán 4 

 Centro para el Control Estatal de Medicamentos, Equipos y Dispositivos Médicos (CECMED), La Habana, Cuba 
 Universidad de las Ciencias Informáticas (UCI), La Habana, Cuba (GRID:grid.441350.7) (ISNI:0000 0004 0386 287X) 
 Universidad de Oriente, Santiago de Cuba, Cuba (GRID:grid.412697.f) (ISNI:0000 0001 2111 8559) 
 Universidad de la Habana (UH), Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), Habana, Cuba (GRID:grid.412165.5) (ISNI:0000 0004 0401 9462) 
Publication year
2021
Publication date
Aug 2021
Publisher
Springer Nature B.V.
ISSN
13880764
e-ISSN
1572896X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2557913441
Copyright
© The Author(s), under exclusive licence to Springer Nature B.V. 2021.