Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The dual XH (OH and CH) hydrogen-bond-donating property of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and the strong dual XH–π interaction with arenes were firstly disclosed by theoretical studies. Here, the high accuracy post-Hartree–Fock methods, CCSD(T)/CBS, reveal the interaction energy of HFIP/benzene complex (−7.22 kcal/mol) and the contribution of the electronic correlation energy in the total interaction energy. Strong orbital interaction between HFIP and benzene was found by using the DFT method in this work to disclose the dual XH–π intermolecular orbital interaction of HFIP with benzene-forming bonding and antibonding orbitals resulting from the orbital symmetry of HFIP. The density of states and charge decomposition analyses were used to investigate the orbital interactions. Isopropanol (IP), an analogue of HFIP, and chloroform (CHCl3) were studied to compare them with the classical OH–π, and non-classical CH–π interactions. In addition, the influence of the aggregating effect of HFIP, and the numbers of substituted methyl groups in benzene rings were also studied. The interaction energies of HFIP with the selected 24 common organic compounds were calculated to understand the role of HFIP as solvent or additive in organic transformation in a more detailed manner. A single-crystal X-ray diffraction study of hexafluoroisopropyl benzoate further disclosed and confirmed that the CH of HFIP shows the non-classical hydrogen-bond-donating behavior.

Details

Title
Dual XH–π Interaction of Hexafluoroisopropanol with Arenes
Author
Lu, Le  VIAFID ORCID Logo 
First page
4558
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2558859507
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.