Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recently, because of the rising population, carbon overloading, and environmental distress, human beings have needed to increase awareness and responsibility for the reduction of agricultural waste. The utilization of agricultural waste as a filler material in reinforced polymers is a fascinating discovery. This review paper attempts to study the physical, mechanical, and thermal behavior of rice husk (RH) as a fiber for reinforcing various synthetic polymers, based on recent studies, conducted between 2017 and 2021. It also highlights that advanced modification techniques could further improve the performance of composites by tailoring the physical and chemical substances of the fiber or matrix. The thermal properties, including flame-retardance and thermal behavior, are also discussed. The characteristics of the fiber–matrix interaction between RH and the polymer matrix provide essential insights into the future-ready applications of this agricultural waste fiber. The way forward in researching RH polymer composites is finally reviewed.

Details

Title
Recent Progress of Rice Husk Reinforced Polymer Composites: A Review
Author
Mohamad Zaki Hassan  VIAFID ORCID Logo  ; Sa’ardin Abdul Aziz; Mohd Yusof Md Daud  VIAFID ORCID Logo 
First page
2391
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2558877596
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.