Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accurate estimation of crop area is essential to adjusting the regional crop planting structure and the rational planning of water resources. However, it is quite challenging to map crops accurately by high-resolution remote sensing images because of the ecological gradient and ecological convergence between crops and non-crops. The purpose of this study is to explore the combining application of high-resolution multi-temporal Sentinel-1 (S1) radar backscatter and Sentinel-2 (S2) optical reflectance images for maize mapping in highly complex and heterogeneous landscapes in the middle reaches of Heihe River, northwest China. We proposed a new two-step method of vegetation extraction and followed by maize extraction, that is, extract the vegetation-covered areas first to reduce the inter-class variance by using a Random Forest (RF) classifier based on S2 data, and then extract the maize distribution in the vegetation area by using another RF classifier based on S1 and/or S2 data. The results demonstrate that the vegetation extraction classifier successfully identified vegetation-covered regions with an overall accuracy above 96% in the study area, and the accuracy of the maize extraction classifier constructed by the combined multi-temporal S1 and S2 images is significantly improved compared with that S1 (alone) or S2 (alone), with an overall accuracy of 87.63%, F1_Score of 0.86, and Kappa coefficient of 0.75. In addition, with the introduction of multi-temporal S1 and/or S2 images in crop growing season, the constructed RF model is more beneficial to maize mapping.

Details

Title
Mapping Maize Area in Heterogeneous Agricultural Landscape with Multi-Temporal Sentinel-1 and Sentinel-2 Images Based on Random Forest
Author
Chen, Yansi 1   VIAFID ORCID Logo  ; Hou, Jinliang 2 ; Huang, Chunlin 2   VIAFID ORCID Logo  ; Zhang, Ying 2 ; Li, Xianghua 1 

 Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] (Y.C.); [email protected] (C.H.); [email protected] (Y.Z.); [email protected] (X.L.); University of Chinese Academy of Sciences, Beijing 100049, China 
 Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] (Y.C.); [email protected] (C.H.); [email protected] (Y.Z.); [email protected] (X.L.) 
First page
2988
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2558906868
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.