This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Energy shortage has been the serious problem for human beings globally due to explosive population growth, accelerated industrialization, and developed living standards [1]. Nowadays, the energy supplied for the whole world consists of fossil fuels and renewable energy. It is noted fossil fuels will be consumed in decades, and thus, renewable energy is expected to be the predominate energy in future. Among renewable energy sources, geothermal energy presents large exploring potential and is welcome all over the world [2–4]. The geothermal system with reservoir temperature lower than 150°C at 1000 m depth is clarified as low-temperature geothermal resource [5]. Due to the advantages of universal distribution and general application, low-temperature geothermal resource has been becoming the research hotspot globally [6–12].
Due to the intensive tectono-magmatic evolution, the Himalaya geothermal belt in China is the famous geothermal area for massive geothermal energy, including southern Tibet, western Yunnan, and western Sichuan [13, 14]. Among them, western Yunnan possesses numerous and widespread high- and low-temperature geothermal waters, representing an outstanding natural laboratory for investigating the genetic mechanism for the geothermal system [15]. Although a wealth of studies concerns the geothermal waters in western Yunnan, the majority was concentrated on the high-temperature geothermal waters in the Rehai and Banglazhang regions [16–24]. In comparison, low-temperature geothermal waters in adjacent Mangbang-Longling areas have been scarcely analyzed. As a result, it is generally suggested that the high-temperature geothermal waters were heated by the underlying magma chamber and were characterized by the involvement of magmatic contents [25]. In contrast, the genetic mechanism of low-temperature geothermal waters remains controversial and has yet to be further investigated. In addition, the relationship between high-temperature and low-temperature geothermal waters is enigmatic. The imbalanced research for the low-temperature geothermal system seriously hampers the comprehensive exploitation of geothermal resource in western Yunnan.
Therefore, we present hydrogeochemical and isotopic analyses (including major and trace elements, as well as deuterium and oxygen isotopes) for fourteen geothermal waters and one cold spring collected from the Mangbang-Longling area in western Yunnan. This study is aimed to the hydrogeochemical characteristic of geothermal and cold spring waters, clarify water-rock interaction, estimate reservoir temperature, and trace recharge source. Our new findings are expected to construct the genetic mechanism of the low-temperature geothermal system, providing the reference for future management and sustainable exploitation of geothermal resource in the Mangbang-Longling area of western Yunnan.
2. Study Area
The Mangbang-Longling area is situated in western Yunnan, southwestern China (Figure 1). It is typical of subtropical monsoon climate with average annual air temperature of 14.8°C and mean annual rainfall of 1470 mm. The geomorphology is typical of medium-high mountain with the elevations of 900–3800 m. The Longchuan and Daying rivers traverse southwestwardly through the Mangbang-Longling area, fed by several streams.
[figures omitted; refer to PDF]
Tectonically, the Mangbang-Longling area is bordered by the Longling-Ruili fault to the east and the Dayingjiang fault to the west [26]. Due to the subduction of the Neo-Tethyan Ocean and subsequent continental collision, widespread magmatic and hydrothermal activities were developed in the western Yunnan [27–30]. In the study area, the Gaoligong Group metamorphic rocks and Yanshanian granitic rocks are exposed instead of sedimentary strata [31]. Neogene volcanic rocks and Pliocene basaltic rocks are formed as overlying cap rocks. Numerous NNW-NW and NS-trending secondary faults and fractures were developed extensively by continuous India-Asia collision [32]. Abundant secondary faults and fractures provide the permeable way for groundwater circulation. In the study area, groundwater is mainly recharged by precipitation and local runoff. The aquifers consist of carbonate and silicate rocks.
As a considerable segment of Himalaya geothermal belt, western Yunnan reserves abundant geothermal resource [33]. Geothermal waters are mostly exposed in the faults or their intersections (Figures 1 and 2). The temperatures of geothermal waters vary greatly with the range of 20–96°C. High-temperature geothermal waters (hydrochemical type: Cl·HCO3-Na) are mostly assembled in the Rehai and Balazhang area, while low-medium temperature geothermal waters (hydrochemical type: HCO3-Na) are distributed dispersedly in the Mangbang-Longling area.
[figure omitted; refer to PDF]
One cold water sample was analyzed for comparison. Cold water sample was characterized as HCO3-Ca type, according to the hydrogeochemical compositions (Figure 3). The minor contents of SiO2, Sr, Li, As, and F were very low and constant as well.
4.2. Environmental Isotopes
The δ18O and δD compositions (vs. Vienna Standard Mean Ocean Water (VSMOW)) of the geothermal water samples varied from −9.2‰ to −11.1‰ and from −57.8‰ to −78.9‰, respectively. Cold water sample showed relatively enriched δ18O (−8.5‰) and δD (−56.6‰) compositions than those of geothermal waters.
4.3. Multimineral Saturation Indices
The thermodynamic process of the groundwater system can be clarified by mineral equilibrium calculation, which is helpful to reflect the process of water-rock interaction [14]. Mineral saturation indices (SI) of geothermal waters were calculated for evaluating mineral equilibrium based on discharge temperature and pH. The PHREEQC 3.0 software was carried out to calculate multimineral SI values [35]. In this study, calculated SI values of most selected minerals (excepted chalcedony and quartz) were lower than zero, indicating geothermal water occurs in undersaturated condition. Detailed results are given in Table 2.
Table 2
Saturation indices of different minerals in geothermal waters.
Sample | GS1 | GS2 | GS3 | GS4 | GS5 | GS6 | GS7 | GS8 | GS9 | GS10 | GS11 | GS12 | GS13 | GS14 |
Anhydrite | −4.07 | −4.66 | −3.37 | −4.52 | −4.48 | −4.36 | −4.8 | −4.65 | −4.47 | −4.69 | −4.92 | −4.21 | −4.36 | −3.64 |
Aragonite | −0.26 | −0.34 | −0.3 | −2.43 | −2.24 | −1.95 | −2.45 | −2.38 | −2.32 | −2.41 | 0.22 | −2.18 | −1.86 | −0.86 |
Calcite | −0.12 | −0.19 | −0.16 | −2.29 | −2.1 | −1.81 | −2.31 | −2.24 | −2.18 | −2.27 | 0.36 | −2.04 | −1.72 | −0.72 |
Chalcedony | 0.18 | 0.28 | 0.2 | 0.23 | 0.26 | 0.14 | 0.18 | 0.09 | 0.15 | 0.28 | 0.18 | 0.18 | 0.3 | 0.08 |
Chrysotile | −5.78 | −6.25 | −5.94 | −15.59 | −14.3 | −12.51 | −15.68 | −15 | −12.57 | −15.55 | −7.23 | −12.69 | −15.7 | −8.58 |
CO2 | −1.07 | −1.21 | −1.32 | −1.87 | −1.8 | −1.88 | −1.86 | −1.86 | −2.01 | −1.7 | −0.95 | −1.94 | −1.34 | −1.65 |
Dolomite | 0.19 | −0.26 | −0.18 | −6.09 | −5.43 | −4.53 | −6.1 | −6.02 | −5.07 | −5.93 | 0.3 | −4.91 | −5.08 | −1.87 |
Gypsum | −3.82 | −4.41 | −3.12 | −4.27 | −4.23 | −4.11 | −4.55 | −4.4 | −4.22 | −4.44 | −4.67 | −3.96 | −4.11 | −3.39 |
Halite | −7.69 | −8.08 | −8.4 | −8.95 | −8.57 | −9.08 | −8.77 | −9.24 | −9.35 | −8.6 | −7.54 | −8.67 | −7.79 | −8.81 |
Quartz | 0.59 | 0.69 | 0.62 | 0.64 | 0.68 | 0.55 | 0.6 | 0.5 | 0.57 | 0.69 | 0.59 | 0.59 | 0.71 | 0.5 |
Sepiolite | −3.95 | −4.1 | −4.01 | −10.41 | −9.49 | −8.5 | −10.54 | −10.82 | −8.51 | −10.3 | −4.92 | −8.56 | −10.36 | −5.97 |
SiO2 (a) | −0.64 | −0.55 | −0.62 | −0.59 | −0.56 | −0.68 | −0.64 | −0.74 | −0.67 | −0.55 | −0.64 | −0.65 | −0.52 | −0.74 |
Talc | −1.66 | −1.93 | −1.76 | 11.37 | −10.01 | −8.46 | −11.54 | −11.92 | −8.49 | −11.23 | −3.11 | −8.57 | −11.34 | −4.65 |
5. Discussion
5.1. Processes Controlling the Hydrogeochemical Compositions
Cl is characterized as the conservative affinity and hardly altered by water-rock interactions and adsorption of rock-forming. For this reason, the relationship between the Cl and other major ions is efficient to trace the hydrogeochemical processes during the formation of geothermal waters. In this study, the relationship between the Cl content and other ion concentrations is shown in Figure 4. It is noteworthy that Cl contents had an obvious liner relationship with K (squared regression coefficient = 0.9336), Na (squared regression coefficient = 0.8362), and SiO2 (squared regression coefficient = 0.7019). Low-temperature geothermal waters in the Mangbang-Longling area were believed to be the results by mixture between surface cold water and a deep geothermal fluid. Notably, the squared regression coefficient of K vs. Cl was higher than squared regression coefficients of Na vs. Cl and SiO2 vs. Cl. Considering widespread exposure of silicate rocks (granitic and metamorphic rocks) in the Mangbang-Longling area, the concentrations of Na and SiO2 were probably influenced by water-rock reaction (dissolution of silicates) and ion exchange.
[figures omitted; refer to PDF]
However, the plots in the Ca, Mg, HCO3, SO4, and F vs. Cl diagrams represented scattered distributions, suggesting that these ions are derived from multiple sources (Figures 4(e)–4(i)). Ca, Mg, and HCO3 were originated from the dissolution of calcite and dolomite, in the case of the Ca/HCO3 and (Ca + Mg)/HCO3 ratios of 1. In this study, the Ca/HCO3 and (Ca + Mg)/HCO3 ratios were lower than 1 (Figures 5(a) and 5(b)). Meanwhile, the saturation indices of carbonate minerals (calcite and dolomite) were lower than zero, excluding the possibility of carbonate reservoir. The depletion of Ca and Mg were attributed to ion exchange from silicates dissolution, while enrichment of HCO3 in the silicate reservoir was probably derived from escaped geothermal gases dominated by CO2. The concentrations of Ca and SO4 did not yield a 1 : 1 line in Figure 5(c), implying hydrogeochemical concentrations of geothermal waters is unlikely determined by dissolution of gypsum.
[figures omitted; refer to PDF]
Large number of the samples were plotted along the 1 : 1 line in the (Na + K)−Cl and (Ca + Mg)−(SO4 + HCO3) diagram. Hence, the hydrogeochemical composition of the samples was mainly attributed to a cation-exchange process which is the result of silicate dissolution (Figure 5(d)).
5.2. Reservoir Temperature and Circulation Depth
Geothermometers determining reservoir temperature are based on the equilibrium of temperature-dependent reactions that occur in the reservoir [36].
5.2.1. Classical Geothermometry
The classical chemical geothermometers (e.g., cation and silica) are applicable for the estimation of the equilibrium temperature in geothermal reservoirs [37–39]. Considering this, cation and silica geothermometers were used to calculate the equilibrium temperatures, whose results are listed in Table 3. However, the results from the cation geothermometers had a great range and variation with wellhead temperatures. In the Na-K-Mg ternary diagram, all plots of geothermal waters were largely deviated from the full equilibrium line and plot in the area of immature waters (Figure 6). Saturation indices of most minerals (except quartz and chalcedony) lower than zero were also typical of immature affinity. Hence, none of the low-temperature geothermal waters in the Mangbang-Longling area had reached full equilibrium with the host rock. In this study, silica geothermometers were more applicable to the geothermal waters than cation geothermometers in this study. Additionally, the oversaturated condition of silicate minerals (quartz and chalcedony) also supported the feasibility of silica geothermometers.
Table 3
Geothermometer calculations of the geothermal waters (unit: °C).
Sample no. | GS1 | GS2 | GS3 | GS4 | GS5 | GS6 | GS7 | GS8 | GS9 | GS10 | GS11 | GS12 | GS13 | GS14 |
Quartz [40] | 144 | 151 | 146 | 148 | 151 | 141 | 144 | 137 | 142 | 151 | 144 | 144 | 153 | 137 |
Quartz (maximum steam loss) [40] | 138 | 145 | 140 | 141 | 144 | 136 | 139 | 133 | 137 | 145 | 138 | 138 | 146 | 133 |
Chalcedony [41] | 118 | 126 | 120 | 122 | 125 | 115 | 118 | 111 | 116 | 126 | 118 | 118 | 128 | 111 |
Na-K [38] | 191 | 203 | 213 | 117 | 110 | 139 | 101 | 126 | 142 | 143 | 168 | 146 | 211 | 197 |
Na-K-Ca [36] | 152 | 153 | 148 | 100 | 96 | 106 | 88 | 104 | 111 | 127 | 132 | 117 | 190 | 131 |
K-Mg [38] | 58 | 58 | 45 | 83 | 74 | 58 | 76 | 83 | 58 | 105 | 67 | 68 | 175 | 45 |
Silica geothermometry, including quartz and chalcedony geothermometers, is the approach to estimate reservoir temperature considering the soluble concentrations of silica minerals. Various silica geothermometers were applied in this study (Table 3). Of note, the chalcedony geothermometer was chosen on the basis of the distribution of samples in the log (K2/Mg) versus the log (SiO2) diagram (Figure 7).
[figure omitted; refer to PDF]
Quartz geothermometer is applied for the reservoir with high temperatures at 150°C and above, while chalcedony geothermometer yields more accurate results when geothermal waters reach equilibrium below 180°C [45]. In the Mangbang-Longling area, the estimated reservoir temperatures calculated by silica geothermometers were lower than 150°C. As such, it is believable that the estimate reservoir temperatures of geothermal waters in the Mangbang-Longling area ranged 111–126°C calculated by the chalcedony geothermometer.
5.2.2. Silicon-Enthalpy Graphic Method
Cold water is believed to be involved in the formation of low-temperature geothermal water due to the immature affinity. In this study, the silica-enthalpy mixing model with the plots of cold and geothermal water was used to estimate the reservoir temperature and mixing ratio (Figure 8) [39]. In the silica-enthalpy mixing model, the average value of cold water samples was chosen as end member point “a” and geothermal water samples were noted as end member point “b.” A red line linking end member points “a” and “b” intersected with the vertical line of the boiling point (96°C) at point “c” and Quartz solubility line at the point “d.” The horizontal axis of point “d” (151°C) suggested the reservoir temperature when no steam separated before mixing. Point “c” was intersected horizontally with the maximum steam loss line at point “e.” The horizontal axis of point “e” (123°C) was the reservoir temperature in the condition of steam separation occurs before mixing. Therefore, the reservoir temperature of 123°C obtained by point “e” was more comparable to the results calculated by the chalcedony geothermometer (111–126°C). The mixing ratio of shallow cold water can be approximately obtained by the length ratio between line ab and line ad, that is to say, 72%.
[figure omitted; refer to PDF]
Fournier [46] raised the silica-enthalpy equations to estimate the mixing ratios of cold waters and the temperatures of initial geothermal waters. The silica-enthalpy equations are given as follows:
In equations (1) and (2), Hh is the enthalpy of initial geothermal water, Hc signifies the enthalpy of cold water, Hs represents the enthalpy of geothermal water, X is the mixing ratio of cold water, Sih defines the SiO2 contents of initial geothermal water, and SiC shows the SiO2 contents of cold water. The results of silica-enthalpy equations indicated the mixing ratios of cold waters, and the temperatures of initial geothermal waters are 69–74% and 180–270°C.
5.2.3. Circulation Depth
When geothermal water is heated by heat flow from below, the circulation depth of geothermal water in the studied area is estimated using the following equation:
5.3. Recharge Origin
H and O stable isotopes (δD and δ18O) have been proved to be a robust way for tracing recharge origin of geothermal water. In this study, the geothermal waters present the δD values of −57.8‰ to −78.9‰ (average = −70.0‰) and δ18O values of −9.2‰ to −11.1‰ (average = −10.4‰), respectively. The plots of geothermal waters were close around the local meteoric water line (LMWL) in the δD–δ18O graph (Figure 9), indicative of a meteoric origin. Geothermal water plots were slightly deviated from the LMWL and further link with high-temperature geothermal water and magmatic water in a straight line. Hence, weak water-rock interaction and involvements of high-temperature geothermal water occurred in the formation of low-temperature geothermal water.
[figure omitted; refer to PDF]
δD and δ18O values have been extensively employed to calculate the recharge elevation because of their altitude effect. Considering the existence of oxygen drifting, the δD values of the geothermal waters are more reliable to estimate the recharge elevation in this study. The recharge elevation difference (△H) of geothermal water are calculated based on the following equation: δD = −0.026
5.4. Conceptual Model of Low-Temperature Geothermal Waters in the Mangbang-Longling Area
According to the geological condition and hydrogeochemical and isotopic results above, a conceptual model of low-temperature geothermal water in the Mangbang-Longling area was built as schematically depicted in Figure 10, which is a qualitative, schematic representation of (or part of) reality. Geothermal water was recharged by common meteoric water at the elevation of 2362–3653 m. Afterward, meteoric water is driven by topographical conditions, flows along fault and fractures, and finally transfers to geothermal water by heating by heat flow from below. Assuming a geothermal gradient of 5.3°C/100 m, geothermal water infiltrates into the subsurface at the reservoir with the largest circulation depth of 1794–2077 m and temperature of 111–126°C. During the circulation, the hydrogeochemical characteristics of geothermal water (HCO3-Na type) were mainly determined by the water-rock interaction with a widespread silicate aquifer (e.g., granite and metamorphic rocks). It is noteworthy that the involvement of high-temperature geothermal water had been verified during the formation of low-temperature geothermal water. Finally, low-temperature geothermal water was mixed with up to 72% shallow cold water of HCO3-Ca type and exposed as geothermal spring in the high permeability areas, such as fault and fracture intersection.
[figure omitted; refer to PDF]6. Conclusion
This study was the first to present the hydrogeochemistry and geothermometry of the low-temperature thermal waters in the Mangbang-Longling area of western Yunnan. In this context, the results obtained from geochemical and isotopic studies are listed as follows.
(1) The low-temperature geothermal waters were characterized by HCO3-Na type, while shallow cold spring is of the hydrochemical type of HCO3-Ca
(2) Hydrogeochemical characteristics of low-temperature geothermal waters were mainly affected by the water-rock interaction with silicate minerals
(3) Low-temperature geothermal waters possessed reservoir temperature of 111–126°C and largest circulation depth of 1794–2077 m and were mixed with up to 72% shallow cold waters
(4) δD and δ18O evidence showed the low-temperature thermal waters were recharged by meteoric water at the elevation of 2362 m to 3653 m. The data points of δD and δ18O of the hot spring water samples in the study area show a linear right-up trend, indicating the δ18O reaction between the water and rock and a possible mixture of magmatic water from below. Deep high-temperature geothermal waters were involved in the formation of low-temperature thermal waters.
Acknowledgments
The authors thank Qiang Zhang and Xun Huang at the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, for their assistance and helpful discussion. This research was supported by the Fundamental Research Funds for the Central Universities (2682020CX10 and 2682021ZTPY063).
[1] H. Zhang, Y. Xie, "Alleviating freshwater shortages with combined desert-based large-scale renewable energy and coastal desalination plants supported by Global Energy Interconnection," Global Energy Interconnection, vol. 2 no. 3, pp. 205-213, DOI: 10.1016/j.gloei.2019.07.013, 2019.
[2] S.-M. Lu, "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, vol. 81, pp. 2902-2921, DOI: 10.1016/j.rser.2017.06.097, 2018.
[3] P. Olasolo, M. C. Juárez, M. P. Morales, S. D´Amico, I. A. Liarte, "Enhanced geothermal systems (EGS): a review," Renewable and Sustainable Energy Reviews, vol. 56, pp. 133-144, DOI: 10.1016/j.rser.2015.11.031, 2016.
[4] X. Zhang, Q. Hu, "Development of geothermal resources in China: a review," Journal of Earth Science, vol. 29 no. 2, pp. 452-467, DOI: 10.1007/s12583-018-0838-9, 2018.
[5] A. Stefánsson, S. Arnórsson, Á. E. Sveinbjörnsdóttir, J. Heinemaier, H. Kristmannsdóttir, "Isotope ( δ D, δ 18O, 3H, δ 13C, 14C) and chemical (B, Cl) Constrains on water origin, mixing, water-rock interaction and age of low-temperature geothermal water," Applied Geochemistry, vol. 108,DOI: 10.1016/j.apgeochem.2019.104380, 2019.
[6] M. Blasco, L. F. Auqué, M. J. Gimeno, P. Acero, J. Gómez, M. P. Asta, "Mineral equilibria and thermodynamic uncertainties in the geothermometrical characterisation of carbonate geothermal systems of low temperature. The case of the Alhama-Jaraba system (Spain)," Geothermics, vol. 78, pp. 170-182, DOI: 10.1016/j.geothermics.2018.11.004, 2019.
[7] M. Blasco, M. J. Gimeno, L. F. Auqué, "Low temperature geothermal systems in carbonate-evaporitic rocks: mineral equilibria assumptions and geothermometrical calculations. Insights from the arnedillo thermal waters (Spain)," Science of The Total Environment, vol. 615, pp. 526-539, DOI: 10.1016/j.scitotenv.2017.09.269, 2018.
[8] A. Gökgöz, H. Akdağoğlu, "Hydrogeology and hydrogeochemistry of a coastal low-temperature geothermal field: a case study from the Datça Peninsula (SW Turkey)," Environmental Earth Sciences, vol. 75 no. 15,DOI: 10.1007/s12665-016-5957-y, 2016.
[9] J. I. Morales-Arredondo, M. V. Esteller-Alberich, M. A. Armienta Hernández, T. A. K. Martínez-Florentino, "Characterizing the hydrogeochemistry of two low-temperature thermal systems in central Mexico," Journal of Geochemical Exploration, vol. 185, pp. 93-104, DOI: 10.1016/j.gexplo.2017.11.006, 2018.
[10] S. Pasvanoğlu, M. Çelik, "Hydrogeochemical characteristics and conceptual model of Çamlıdere low temperature geothermal prospect, northern Central Anatolia," Geothermics, vol. 79, pp. 82-104, 2019.
[11] E. Pekkan, S. Kahraman, "Evaluation of the conceptual model of low-temperature thermal water of Kızılinler Region, Eskişehir, Turkey," Geothermics, vol. 84,DOI: 10.1016/j.geothermics.2019.101739, 2020.
[12] J. Pepin, M. Person, F. Phillips, "Deep fluid circulation within crystalline basement rocks and the role of hydrologic windows in the formation of the Truth or Consequences, New Mexico low-temperature geothermal system," Geofluids, vol. 15 no. 1-2, pp. 139-160, DOI: 10.1111/gfl.12111, 2015.
[13] Q. Guo, "Hydrogeochemistry of high-temperature geothermal systems in China: a review," Applied Geochemistry, vol. 27 no. 10, pp. 1887-1898, DOI: 10.1016/j.apgeochem.2012.07.006, 2012.
[14] X. Li, X. Huang, X. Liao, Y. Zhang, "Hydrogeochemical characteristics and conceptual model of the geothermal waters in the xianshuihe fault zone, southwestern China," International Journal of Environmental Research and Public Health, vol. 17 no. 2,DOI: 10.3390/ijerph17020500, 2020.
[15] Z. J. Liao, W. Tong, S. B. Liu, F. S. Zhao, "High-temperature hydrothermal systems in west yunnan province, China," Geothermics, vol. 15, pp. 627-631, 1986.
[16] J. Du, C. Liu, B. Fu, "Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the rehai geothermal field, southwestern China," Journal of Volcanology and Geothermal Research, vol. 142 no. 3-4, pp. 243-261, DOI: 10.1016/j.jvolgeores.2004.11.009, 2005.
[17] Q. Guo, M. Liu, J. Li, X. Zhang, W. Guo, Y. Wang, "Fluid geochemical constraints on the heat source and reservoir temperature of the Banglazhang hydrothermal system, Yunnan-Tibet Geothermal Province, China," Journal of Geochemical Exploration, vol. 172, pp. 109-119, DOI: 10.1016/j.gexplo.2016.10.012, 2017.
[18] Q. Guo, B. Planer-Friedrich, M. Liu, J. Li, C. Zhou, Y. Wang, "Arsenic and thioarsenic species in the hot springs of the Rehai magmatic geothermal system, Tengchong volcanic region, China," Chemical Geology, vol. 453, pp. 12-20, DOI: 10.1016/j.chemgeo.2017.02.010, 2017.
[19] Q. Guo, Y. Wang, "Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China," Journal of Volcanology and Geothermal Research, vol. 215, pp. 61-73, DOI: 10.1016/j.jvolgeores.2011.12.003, 2012.
[20] B. P. Hedlund, J. K. Cole, A. J. Williams, "A review of the microbiology of the Rehai geothermal field in Tengchong, Yunnan Province, China," Geoscience Frontiers, vol. 3 no. 3, pp. 273-288, DOI: 10.1016/j.gsf.2011.12.006, 2012.
[21] M. Liu, Q. Guo, X. Zhang, Y. Wang, "Characteristic solutes in geothermal water from the Rehai hydrothermal system, Southwestern China," Journal of Earth Science, vol. 26 no. 1, pp. 140-148, DOI: 10.1007/s12583-015-0600-5, 2015.
[22] Z. Shangguan, C. Zhao, H. Li, Q. Gao, M. Sun, "Evolution of hydrothermal explosions at Rehai geothermal field, Tengchong volcanic region, China," Geothermics, vol. 34 no. 4, pp. 518-526, DOI: 10.1016/j.geothermics.2005.05.002, 2005.
[23] M. Wang, X. Zhou, Y. Liu, H. Xu, Y. Wu, L. Zhuo, "Major, trace and rare earth elements geochemistry of geothermal waters from the Rehai high-temperature geothermal field in Tengchong of China," Applied Geochemistry, vol. 119,DOI: 10.1016/j.apgeochem.2020.104639, 2020.
[24] G. Zhang, C.-Q. Liu, H. Liu, Z. Jin, G. Han, L. Li, "Geochemistry of the Rehai and ruidian geothermal waters, yunnan province, China," Geothermics, vol. 37 no. 1, pp. 73-83, DOI: 10.1016/j.geothermics.2007.09.002, 2008.
[25] Y. Zhang, H. Tan, W. Zhang, H. Wei, T. Dong, "Geochemical constraint on origin and evolution of solutes in geothermal springs in western Yunnan, China," Geochemistry, vol. 76 no. 1, pp. 63-75, DOI: 10.1016/j.chemer.2015.11.002, 2016.
[26] H. Zou, H.-W. Cao, L. Bagas, "Origin of the Mo-bearing xiaoshuijing syenogranite in the tengchong terrane, SW China," Ore Geology Reviews, vol. 105, pp. 258-272, DOI: 10.1016/j.oregeorev.2018.12.018, 2019.
[27] H.-W. Cao, Y.-H. Zhang, L. Tang, "Geochemistry, zircon U–Pb geochronology and Hf isotopes of jurassic-cretaceous granites in the Tengchong terrane, SW China: implications for the mesozoic tectono-magmatic evolution of the eastern tethyan tectonic domain," International Geology Review, vol. 61 no. 3, pp. 257-279, DOI: 10.1080/00206814.2017.1422445, 2019.
[28] H.-W. Cao, Y.-H. Zhang, M. Santosh, "Mineralogy, zircon U-Pb-Hf isotopes, and whole-rock geochemistry of late cretaceous-eocene granites from the Tengchong terrane, western Yunnan, China: record of the closure of the Neo-Tethyan Ocean," Geological Journal, vol. 53 no. 4, pp. 1423-1441, DOI: 10.1002/gj.2964, 2018.
[29] H.-W. Cao, Y.-H. Zhang, Q.-M. Pei, "U-Pb dating of zircon and cassiterite from the Early Cretaceous Jiaojiguan iron-tin polymetallic deposit, implications for magmatism and metallogeny of the Tengchong area, western Yunnan, China," International Geology Review, vol. 59 no. 2, pp. 234-258, DOI: 10.1080/00206814.2016.1220842, 2017.
[30] Y.-H. Zhang, Y.-S. Wang, W.-S. Wang, J. Liu, L.-L. Yuan, "Zircon U-Pb-Hf isotopes and mineral chemistry of early cretaceous granodiorite in the lunggar iron deposit in central Lhasa, Tibet Y, China," Journal of Central South University, vol. 26 no. 12, pp. 3457-3469, DOI: 10.1007/s11771-019-4266-5, 2019.
[31] Y. Fang, Y.-H. Zhang, S.-T. Zhang, H.-W. Cao, H. Zou, J.-H. Dong, "Early Cretaceous I-type granites in the Tengchong terrane: new constraints on the late Mesozoic tectonic evolution of southwestern China," Geoscience Frontiers, vol. 9 no. 2, pp. 459-470, DOI: 10.1016/j.gsf.2017.04.007, 2018.
[32] S. Mohadjer, T. A. Ehlers, R. Bendick, S. G. Mutz, "Review of GPS and Quaternary fault slip rates in the Himalaya-Tibet orogen," Earth-Science Reviews, vol. 174 no. 1, pp. 39-52, DOI: 10.1016/j.earscirev.2017.09.005, 2017.
[33] Z. Liao, "Hot Springs in Southwestern China," Springer Hydrogeology, pp. 79-163, DOI: 10.1007/978-981-10-3485-5_6, 2018.
[34] A. M. Piper, "A graphic procedure in the geochemical interpretation of water-analyses," Transactions, American Geophysical Union, vol. 25 no. 6, pp. 914-928, DOI: 10.1029/tr025i006p00914, 1944.
[35] D. L. Parkhurst, C. Appelo, "Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations," US Geological Survey,DOI: 10.3133/tm6a43, 2013.
[36] R. O. Fournier, A. H. Truesdell, "An empirical Na-K-Ca geothermometer for natural waters," Geochimica et Cosmochimica Acta, vol. 37 no. 5, pp. 1255-1275, DOI: 10.1016/0016-7037(73)90060-4, 1973.
[37] R. O. Fournier, "Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot-spring systems," Journal of Volcanology and Geothermal Research, vol. 5 no. 1-2,DOI: 10.1016/0377-0273(79)90029-5, 1979.
[38] W. F. Giggenbach, "Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators," Geochimica et cosmochimica acta, vol. 52 no. 12, pp. 2749-2765, DOI: 10.1016/0016-7037(88)90143-3, 1988.
[39] A. Truesdell, R. Fournier, "Procedure for estimating the temperature of a hot-water component in a mixed water by using a plot of dissolved silica versus enthalpy," Journal of Research of the U. S. Geological Survey, vol. 5, pp. 49-52, 1977.
[40] R. Fournier, "Chemical geothermometers and mixing models for geothermal systems," Geothermics, vol. 5 no. 1-4, pp. 41-50, DOI: 10.1016/0375-6505(77)90007-4, 1977.
[41] S. Arnórsson, E. Gunnlaugsson, H. Svavarsson, "The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations," Geochimica et Cosmochimica Acta, vol. 47 no. 3, pp. 567-577, DOI: 10.1016/0016-7037(83)90278-8, 1983.
[42] W. F. Giggenbach, R. B. Glover, "Tectonic regime and major processes governing the chemistry of water and gas discharges from the rotorua geothermal field, New Zealand," Geothermics, vol. 21 no. 1-2, pp. 121-140, DOI: 10.1016/0375-6505(92)90073-i, 1992.
[43] R. W. Henley, "Chemical equilibrium; hydrothermal deposits; geochemistry; water chemistry," Geothermal Resources, 1984.
[44] F. D’amore, C. Panichi, "Geochemistry in geothermal exploration," International Journal of Energy Research, vol. 9 no. 3, pp. 277-298, DOI: 10.1002/er.4440090307, 1985.
[45] R. O. Fournier, "The behavior of silica in hydrothermal solutions," Geology and Geochemistry of Epithermal Systems,DOI: 10.5382/rev.02.03, 1985.
[46] R. Fournier, "Geochemical indicators of subsurface temperature- part 2 estimation and fraction of hot water mixed with cold water," Journal of Research of the U. S. Geological Survey, vol. 2, 1974.
[47] Y. Liu, X. Zhou, Z. Deng, "Hydrochemical characteristics and genesis analysis of the Jifei hot spring in Yunnan, southwestern China," Geothermics, vol. 53, pp. 38-45, DOI: 10.1016/j.geothermics.2014.04.002, 2015.
[48] Z. H. Zhou, C. Y. Xiang, J. M. Zhao, "Characteristics of geothermal field inWest yunnan," Journal of Seismological Research, vol. 18 no. 1, pp. 41-48, DOI: 10.1785/gssrl.66.5.41, 1995.
[49] J. Yu, H. Zhang, F. Yu, D. Liu, "Oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of Xizang," Chinese Journal of Geochemistry, vol. 3 no. 2, pp. 93-101, 1984.
[50] Y. Zhang, M. Xu, X. Li, "Hydrochemical characteristics and multivariate statistical analysis of natural water system: a case study in kangding county, southwestern China," Water, vol. 10 no. 1,DOI: 10.3390/w10010080, 2018.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2021 Xing-Wang Chang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
Numerous low-temperature geothermal waters are distributed extensively in Mangbang-Longling of western Yunnan in China, whose formation mechanism has not been completely investigated yet. This study focused on the hydrogeochemical evolution, reservoir temperature, and recharge origin of geothermal waters using hydrogeochemical and deuterium-oxygen (D-O) isotopic studies. The low-temperature geothermal waters were characterized by HCO3-Na type, while shallow cold spring was of the hydrochemical type of HCO3-Ca. The hydrogeochemical characteristics of low-temperature geothermal waters were mainly determined by the dissolution of silicate minerals based on the geological condition and correlations of major and minor ions. The reservoir temperatures of low-temperature geothermal waters ranged from 111°C to 126°C estimated by silica geothermometry and the silicon-enthalpy graphic method. Low-temperature geothermal waters circulated at the largest depth of 1794–2077 m where deep high-temperature geothermal waters were involved. The data points of δD and δ18O of the hot spring water samples in the study area show a linear right-up trend, indicating the δ18O reaction between the water and rock and a possible mixture of magmatic water from below. The low-temperature thermal waters were recharged by meteoric water at the elevation of 2362–3653 m calculated by δD values. Upwelling by heating energy, low-temperature geothermal waters were exposed as geothermal springs in the fault and fracture intersection and mixed by up to 72% shallow cold waters at surface. Based on acquired data, a conceptual model of the low-temperature geothermal waters in the Mangbang-Longling area was proposed for future exploitation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; China Railway Eryuan Engineering Group Co. Ltd., Chengdu, Sichuan 610031, China
2 State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
3 China Railway Eryuan Engineering Group Co. Ltd., Chengdu, Sichuan 610031, China
4 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China