It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Unmanned Aerial Vehicle (UAV) with Light Detecting Radar (LiDAR) sensor can be used to obtained high ground resolution data and generate good quality of Digital Terrain Model (DTM) as much can decrease the cost of data acquisition and processing time. This study aims to evaluate the influences of flying altitude and terrain on DTM accuracies obtained with UAV-based LiDAR. In this study, point clouds from UAV AL3 S1000 and AL3 – 32 LiDAR were used for generating DTM on two different terrains (i.e. flat, slope and overall) with three different flying altitudes (i.e. 20m, 40m and 60m) and validate with ground control points by using 129 reference points which taken from ground survey technique (GPS, total station and optical levelling). The Root Mean Square Error (RMSE) of point clouds elevation obtained at different altitudes for the flat area are 0.015m, 0.027m and 0.105m at the altitudes of 20m, 40m and 60m, respectively. Meanwhile, RMSE values for slope area are 0.267m, 0.298m and 0.343m at the altitudes of 20m, 40m and 60m, respectively. Overall study area gives the RMSE values of 0.323m, 0.450m and 0.616m at 20m, 40m and 60m altitude, respectively. The result shows that the change of RMSE values influenced by the different of altitude and terrain, which provides accurate and faster results.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Geospatial Imaging and Information Research Group, Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia