It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Electronic nematicity is often found in unconventional superconductors, suggesting its relevance for electronic pairing. In the strongly hole-doped iron-based superconductors, the symmetry channel and strength of the nematic fluctuations, as well as the possible presence of long-range nematic order, remain controversial. Here, we address these questions using transport measurements under elastic strain. By decomposing the strain response into the appropriate symmetry channels, we demonstrate the emergence of a giant in-plane symmetric contribution, associated with the growth of both strong electronic correlations and the sensitivity of these correlations to strain. We find weakened remnants of the nematic fluctuations that are present at optimal doping, but no change in the symmetry channel of nematic fluctuations with hole doping. Furthermore, we find no indication of a nematic-ordered state in the AFe2As2 (A = K, Rb, Cs) superconductors. These results revise the current understanding of nematicity in hole-doped iron-based superconductors.
Whether the electronic nematicity is related to electronic pairing in strongly hole-doped iron-based superconductors remains controversial. Here, the authors perform transport measurements on AFe2As2 (A = K, Rb, Cs) superconductors under elastic strain, and find no indication of a nematic ordered state.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Karlsruhe, Germany (GRID:grid.7892.4) (ISNI:0000 0001 0075 5874)
2 Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Karlsruhe, Germany (GRID:grid.7892.4) (ISNI:0000 0001 0075 5874); Ruhr-Universität Bochum, Institut für Experimentalphysik IV, Bochum, Germany (GRID:grid.5570.7) (ISNI:0000 0004 0490 981X)