It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Current research on lane-keeping systems ignores the effect of the driver and external resistance on the accuracy of tracking the lane centerline. To reduce the lateral deviation of the vehicle, a lane-keeping control method based on the fuzzy Takagi-Sugeno (T-S) model is proposed. The method adopts a driver model based on near and far visual angles, and a driver-road-vehicle closed-loop model based on longitudinal nonlinear velocity variation, obtaining the expected assist torque with a robust H∞ controller which is designed based on parallel distributed compensation and linear matrix inequality. Considering the external influences of tire adhesion and aligning torque when the vehicle is steering, a feedforward compensation control is designed. The electric power steering system is adopted as the actuator for lane-keeping, and active steering redressing is realized by a control motor. Simulation results based on Carsim/Simulink and real vehicle test results demonstrate that the method helps to maintain the vehicle in the lane centerline and ensures driving safety.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Hefei University of Technology, School of Automobile and Traffic Engineering, Hefei, China (GRID:grid.256896.6)