Abstract

Patient-derived 3D cell culture systems are currently advancing cancer research since they potentiate the molecular analysis of tissue-like properties and drug response under well-defined conditions. However, our understanding of the relationship between the heterogeneity of morphological phenotypes and the underlying transcriptome is still limited. To address this issue, we here introduce “pheno-seq” to directly link visual features of 3D cell culture systems with profiling their transcriptome. As prototypic applications breast and colorectal cancer (CRC) spheroids were analyzed by pheno-seq. We identified characteristic gene expression signatures of epithelial-to-mesenchymal transition that are associated with invasive growth behavior of clonal breast cancer spheroids. Furthermore, we linked long-term proliferative capacity in a patient-derived model of CRC to a lowly abundant PROX1-positive cancer stem cell subtype. We anticipate that the ability to integrate transcriptome analysis and morphological patho-phenotypes of cancer cells will provide novel insight on the molecular origins of intratumor heterogeneity.

Details

Title
Pheno-seq – linking visual features and gene expression in 3D cell culture systems
Author
Tirier, Stephan M 1 ; Park, Jeongbin 2   VIAFID ORCID Logo  ; Preußer, Friedrich 3   VIAFID ORCID Logo  ; Amrhein, Lisa 4   VIAFID ORCID Logo  ; Gu, Zuguang 5 ; Steiger, Simon 6 ; Jan-Philipp Mallm 7   VIAFID ORCID Logo  ; Krieger, Teresa 8 ; Waschow, Marcel 6 ; Eismann, Björn 6 ; Gut, Marta 9 ; Gut, Ivo G 9 ; Rippe, Karsten 10   VIAFID ORCID Logo  ; Schlesner, Matthias 11   VIAFID ORCID Logo  ; Theis, Fabian 4   VIAFID ORCID Logo  ; Fuchs, Christiane 12   VIAFID ORCID Logo  ; Ball, Claudia R 13 ; Glimm, Hanno 14 ; Eils, Roland 15 ; Conrad, Christian 16 

 Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany 
 Digital Health Center, Berlin Institute of Health (BIH)/Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany 
 Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany 
 Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, Munich, Neuherberg, Germany; Department of Mathematics, Technische Universität München, Munich, Germany 
 Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Center for Personalized Oncology, DKFZ-HIPO, DKFZ, Heidelberg, Germany 
 Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany 
 Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany; Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Center for Personalized Oncology, DKFZ-HIPO, DKFZ, Heidelberg, Germany 
 Digital Health Center, Berlin Institute of Health (BIH)/Charité-Universitätsmedizin Berlin, Berlin, Germany; Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany 
 CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain 
10  Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany; Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany 
11  Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany 
12  Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, Munich, Neuherberg, Germany; Department of Mathematics, Technische Universität München, Munich, Germany; Faculty of Business Administration and Economics, Bielefeld University, Bielefeld, Germany 
13  Department of Translational Oncology, NCT Dresden, University Hospital, Carl Gustav Carus, Technische Universität Dresden, Dresden and DKFZ, Heidelberg, Germany 
14  Department of Translational Oncology, NCT Dresden, University Hospital, Carl Gustav Carus, Technische Universität Dresden, Dresden and DKFZ, Heidelberg, Germany; German Cancer Consortium, Heidelberg, Germany 
15  Digital Health Center, Berlin Institute of Health (BIH)/Charité-Universitätsmedizin Berlin, Berlin, Germany; Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Center for Personalized Oncology, DKFZ-HIPO, DKFZ, Heidelberg, Germany; Health Data Science Unit, University Hospital Heidelberg, Heidelberg, Germany 
16  Digital Health Center, Berlin Institute of Health (BIH)/Charité-Universitätsmedizin Berlin, Berlin, Germany; Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Center for Personalized Oncology, DKFZ-HIPO, DKFZ, Heidelberg, Germany 
Pages
1-15
Publication year
2019
Publication date
Aug 2019
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2280477512
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.