It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recent years, in medical image especially cancer detection used whole slide digital scanners, called as histopathology image (images of tissues and cell) where it can now be keep in digital images. Consequently, using Deep Learning will help pathologist in cancer detection (cancer cell known as mitosis). In this paper, we are using Deep Learning Layer Convolutional Neural Network (CNN) for cancer classification using histopathology image and used AMIDA dataset which are related on female breast cancer dataset. Mitosis is an important parameter for the prognosis/diagnosis of breast cancer. However, using histopathology image for cancer detection is a challenging problem that needs a deeper investigations. This problem occurs when to classify mitosis because mitosis is small objects with a large variety of shapes, and they can thus be easily confused with some other objects or artefacts present in the image. In this paper, the objective to find the suitable layer for Deep Learning Convolutional Neural Network and reduce the loss rate.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia