It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
To apply real-time predictive control using automated devices for minimizing the risk of surface condensation in a residential space, the authors first developed a nodal network model that simulates the flow of moist air and the thermal behavior of a target area with the given boundary conditions of a space. The lumped model was enhanced using a parameter estimation technique based on the measured temperature, humidity, and schedule data. However, the humidity model prediction performance was still outside the valid range. A data-driven model was then developed using an artificial neural network (ANN) with the measured data that was formerly used to enhance the lumped model. Taking into consideration the possible uncertain characteristics of moist air, it was found that the data-driven model was a more suitable option for predicting the condensation as compared to the physics-based and grey-box models. With a stable range of errors between the simulation outputs and measured data, the ANN model could be useful for model predictive control.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Architecture and Architectural Engineering, Seoul National University, South Korea
2 Data Science Lab, Korea Electric Power Corporation (KEPCO), South Korea