Full text

Turn on search term navigation

Copyright © 2021 Fan Guohua et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Acute lung injury (ALI) is featured by pulmonary edema, alveolar barrier injury, inflammatory response, and oxidative stress. The activation of Sirt1 could relieve lipopolysaccharide- (LPS-) induced murine ALI by maintaining pulmonary epithelial barrier function. Oxypaeoniflorin (Oxy) serves as a major component of Paeonia lactiflora Pall., exerting cardioprotection by activating Sirt1. However, the role of Oxy in ALI induced by LPS remains unclear. The aim of the present study is to illustrate the modulatory effects and molecular mechanisms by which Oxy operates in ALI induced by LPS. The intraperitoneal injection of LPS was performed to establish the murine ALI model while LPS-treated alveolar epithelial cells were used to mimic the in vitro ALI model. Levels of lung injury, oxidative stress, and inflammatory response were detected to observe the potential effects of Oxy on ALI. Oxy treatment mitigated lung edema, inflammatory response, and oxidative stress in mouse response to LPS, apart from improving 7-day survival. Meanwhile, Oxy also increased the expression and activity of Sirt1. Intriguingly, Sirt1 deficiency or inhibition counteracted the protective effects of Oxy treatment in LPS-treated mice or LPS-treated alveolar epithelial cells by regulating the PTEN/AKT signaling pathway. These results demonstrated that Oxy could combat ALI in vivo and in vitro through inhibiting inflammatory response and oxidative stress in a Sirt1-dependent manner. Oxy owns the potential to be a promising candidate against ALI.

Details

Title
Oxypaeoniflorin Prevents Acute Lung Injury Induced by Lipopolysaccharide through the PTEN/AKT Pathway in a Sirt1-Dependent Manner
Author
Fan Guohua 1 ; Zhu Tieyuan 1 ; Wang, Rui 2   VIAFID ORCID Logo  ; Xiong, Juan 1   VIAFID ORCID Logo 

 Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China 
 Department of Emergency, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China 
Editor
Alin Ciobica
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
19420900
e-ISSN
19420994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2561325246
Copyright
Copyright © 2021 Fan Guohua et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/