Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Vitamin A is a family of derivatives synthesized from carotenoids acquired from the diet and can be converted in animals to bioactive forms essential for life. Vitamin A1 (all-trans-retinol/ATROL) and provitamin A1 (all-trans-β,β-carotene/ATBC) are precursors of all-trans-retinoic acid acting as a ligand for the retinoic acid receptors. The contribution of ATROL and ATBC to formation of 9-cis-13,14-dihydroretinoic acid (9CDHRA), the only endogenous retinoid acting as retinoid X receptor (RXR) ligand, remains unknown. To address this point novel and already known retinoids and carotenoids were stereoselectively synthesized and administered in vitro to oligodendrocyte cell culture and supplemented in vivo (orally) to mice with a following high-performance liquid chromatography-mass spectrometry (HPLC-MS)/UV-Vis based metabolic profiling. In this study, we show that ATROL and ATBC are at best only weak and non-selective precursors of 9CDHRA. Instead, we identify 9-cis-13,14-dihydroretinol (9CDHROL) and 9-cis-13,14-dihydro-β,β-carotene (9CDHBC) as novel direct nutritional precursors of 9CDHRA, which are present endogenously in humans and the human food chain matrix. Furthermore, 9CDHROL displayed RXR-dependent promnemonic activity in working memory test similar to that reported for 9CDHRA. We also propose that the endogenous carotenoid 9-cis-β,β-carotene (9CBC) can act as weak, indirect precursor of 9CDHRA via hydrogenation to 9CDHBC and further metabolism to 9CDHROL and/or 9CDHRA. In summary, since classical vitamin A1 is not an efficient 9CDHRA precursor, we conclude that this group of molecules constitutes a new class of vitamin or a new independent member of the vitamin A family, named “Vitamin A5/X”.

Details

Title
Vitamin A5/X, a New Food to Lipid Hormone Concept for a Nutritional Ligand to Control RXR-Mediated Signaling
Author
Krężel, Wojciech 1 ; Rivas, Aurea 2 ; Szklenar, Monika 3 ; Ciancia, Marion 1 ; Alvarez, Rosana 2   VIAFID ORCID Logo  ; de Lera, Angel R 2   VIAFID ORCID Logo  ; Rühl, Ralph 4 

 Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France; [email protected]; Inserm, U 1258, 67404 Illkirch, France; CNRS UMR 7104, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France 
 Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain; [email protected] (A.R.); [email protected] (R.A.) 
 Paprika Bioanalytics BT, 4002 Debrecen, Hungary; [email protected] 
 Paprika Bioanalytics BT, 4002 Debrecen, Hungary; [email protected]; CISCAREX UG, 13351 Berlin, Germany 
First page
925
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20726643
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2562156737
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.