It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study aimed to investigate the polymerisation process of Merbau extractives (ME) and the characteristics of the phenolic resin polymers made from ME. These polymerised ME (PME) can potentially be utilised as an impregnating material to enhance the wood properties of young plantation timber. Selected PME were characterised via Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction analysis, and ultraviolet-visible analysis. The prediction of the enhancement to the wood properties when treated with the obtained PME was discussed in relation to the physico-chemical and thermal characteristics of the polymeric materials. The results showed that the ME can be polymerised in its base condition with formaldehyde and resorcinol as the copolymer to produce the PME. The resin was classified as a resole and polymerisation can be done at room temperature. The physico-chemical tests and analyses, via boiling tests and FTIR spectra confirmed that the polymeric compound is a promising impregnating material that can enhance wood properties. This polymeric material is also eco-friendly as the low level of free formaldehyde.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Forest Products Research and Development Center, Ministry of Environment and Forestry, Bogor, Indonesia
2 School of Environment and Forestry, The University of Melbourne, Burnley Campus, Australia