It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Diesel engine is using prominently in islands and remote areas due to its reliability and stability for power generation. In recent years, most of the isolated power systems (e.g., islands and remote areas) have integrated renewable energies to reduce both the cost and pollution in diesel power generating system. However, due to intermittent and stochastic behaviour of renewable sources (e.g., solar and wind), it is unable to eliminate diesel generation entirely. In that case, low-load diesel operation (operation < 30% of maximum rated load) is particularly relevant for its ability to support higher levels of renewable penetration. In this paper, a thermodynamic model was developed using MATLAB for diesel engine combustion and performance. This model includes sub models such as heat release rate, heat transfer, double-Wiebe function, and ignition delay correlation. Engine thermal efficiency (TE), brake power (BP), indicated mean effective pressure (IMEP) and brake specific fuel consumption (BSFC) has been taken into consideration for performance analysis. The simulation results show that at 25% load, in-cylinder pressure and temperature are 168 bar and 2300 K which are the cause of lower heat release rate (74 J/deg) and longer ignition delay (0.25 ∼0.5 ms higher than that of conventional mode) and significantly responsible for lower efficiency (18%), brake power (4kW) and higher brake specific fuel consumption (1.2 g/kWh).
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Engineering, University of Tasmania, Hobart TAS 7001, Australia
2 School of Engineering, University of Tasmania, Hobart TAS 7001, Australia; School of Engineering and Technology, Central Queensland University, QLD 4701, Australia