It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Electrochemical corrosion measurements allow calculation of the instantaneous zinc corrosion rate via polarization resistances by using tafel factors. However, the determination of the actual tafel factor is problematic since it depends on the state of the formed zinc layers and the corrosion reactions taking place. Therefore, valid tafel factors are either determined in additional experiments via dynamic polarization or estimated by calculation. In most cases a constant value for tafel factors is assumed for simplification, without regard to the real conditions of the corroding system. Since naturally formed zinc layers are unstable using conventional test electrolyte solutions determination of tafel factors is hindered additionally and inaccurate interpretations can result. For some time now, the use of gel-type electrolytes in corrosion research has enabled minimally invasive investigation of zinc surface layers and thus offers new approaches to a scientifically proven determination of tafel factors. The paper presents a new method for the determination and evaluation of tafel factors using gel-type electrolytes and electrochemical frequency modulation technique (EFM). This relatively new electrochemical method offers the possibility to determine both polarization resistances and tafel factors within one measurement and in short measuring intervals. Starting from a comprehensive parameter study it is shown that a direct relationship between the two values exists that can be described mathematically. This contribution presents the determined tafel factors for the system gel-type electrolyte/zinc and discusses their applicability and their limits.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Bundesanstalt für Materialforschung und –prüfung, Division 7.6 Corrosion and Corrosion Protection, Berlin, Germany
2 Korrosionsdiagnostik Dr. Andreas Heyn, Magdeburg, Germany