It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this paper, in order to approach this problem, specimens of pure titanium were treated with WCP, and the subsequent changes in microstructure, residual stress, and surface morphologies were investigated as a function of WCP duration. The influence of water cavitation peening (WCP) treatment on the microstructure of pure titanium was investigated. A novel combined finite element and dislocation density method (FEM/DDM), proposed for predicting macro and micro residual stresses induced on the material subsurface treated with water cavitation peening, is also presented. A bilinear elastic-plastic finite element method was conducted to predict macro-residual stresses and a dislocation density method was conducted to predict micro-residual stresses. These approaches made possible the prediction of the magnitude and depth of residual stress fields in pure titanium. The effect of applied impact pressures on the residual stresses was also presented. The results of the FEM/DDM modeling were in good agreement with those of the experimental measurements.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Material Science and Engineering, Saitama Institute of Technology, Japan
2 Department of Mechanical Engineering, University of Science and Technology Liaoning, Qianshan load 184, Anshan, China