Abstract

In this study, activated carbon was developed from sugarcane bagasse and its effectiveness in adsorbing lead (Pb2+) ions from synthetic aqueous solution was examined. Sugarcane bagasse activated carbon (SCBA) was developed in a tube furnace at a temperature of 900 °C, a heating rate of 10 °C/min, residence time of 3 hours, and at a nitrogen flow rate of 100 mL/min. Batch adsorption experiments were carried out to investigate the effects of pH and SCBA dosages on the adsorption process. The batch adsorption test showed that extent of Pb2+ adsorption by SCBA was dependent upon pH and SCBA dosage. The optimum pH for Pb2+ adsorption was found to be at pH 5.0. Maximum Pb2+ removal efficiency obtained from the batch studies was 87.3 % at SCBA dosage of 10 g/L. Equilibrium adsorption data was described by Langmuir model with a coefficient of determination (R2) of 0.9508. Maximum adsorption capacity according to Langmuir model was evaluated to be 23.4 mg/g. The adsorption capacity of the SCBA was compared with that of other plant-based adsorbents. SCBA is an effective adsorbent for the removal of Pb2+ from aqueous solution.

Details

Title
Adsorption of Lead ions onto Activated Carbon derived from Sugarcane bagasse
Author
Salihi, I U 1 ; Kutty, SRM 1 ; Isa, M H 1 

 Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS (UTP), 32610 Bandar Seri Iskandar Perak, Darul Ridzuan, Malaysia 
Publication year
2017
Publication date
Jun 2017
Publisher
IOP Publishing
ISSN
17578981
e-ISSN
1757899X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2564571196
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.