Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nonwovens made of recycled carbon fibers (rCF) and thermoplastic (TP) fibers have excellent economic and ecological potential. In contrast to new fibers, recycled carbon fibers are significantly cheaper, and the CO2 footprint is mostly compensated by energy savings in the first product life cycle. The next step for this promising material is its industrial serial use. Therefore, we analyzed the process chain from fiber to composite material. Initially, the rCF length at different positions during the carding process was measured. Thereafter, we evaluated the influence of the TP fibers on the processing, fiber shortening, and mechanical properties. Finally, several nonwovens with different TP fibers and fiber volume contents between 15 vol% and 30 vol% were produced, consolidated by hot-pressing, and tested by four-point bending to determine the mechanical values. The fiber length reduction ranged from 20.6% to 28.4%. TP fibers cushioned the rCF against mechanical stress but held rCF fragments back due to their crimp. The resulting bending strength varied from 301 to 405 MPa, and the stiffness ranged from 16.3 to 30.1 GPa. Design recommendations for reduced fiber shortening are derived as well as material mixtures that offer better homogeneity and higher mechanical properties.

Details

Title
Influences on Textile and Mechanical Properties of Recycled Carbon Fiber Nonwovens Produced by Carding
Author
Manis, Frank 1 ; Stegschuster, Georg 2 ; Wölling, Jakob 1 ; Schlichter, Stefan 2 

 Fraunhofer Institute for Casting, Composite and Processing Technology IGCV, 86159 Augsburg, Germany; [email protected] 
 Institut Für Textiltechnik Augsburg gGmbH, 86159 Augsburg, Germany; [email protected] (G.S.); [email protected] (S.S.) 
First page
209
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
2504477X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2565291566
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.