It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the 2018 experimental campaign, fast ions in the stellarator Wendelstein 7-X will be generated by neutral beam injection. Later operation phases will also include ion cyclotron resonance heating. The fast ions may excite instabilities in the plasma which can lead to enhanced fast-ion transport and can, in severe cases, cause damage to plasma-facing components.
We present a numerical study of fast-ion-driven Alfvén eigenmodes in a Wendelstein 7-X high-mirror equilibrium. Realistic fast-ion parameters are obtained using the ASCOT code. To model the instabilities, we use the CKA-EUTERPE code package. This model is perturbative, since a fixed mode structure – computed by the ideal-MHD code CKA – is used throughout the calculation. The non-linear gyro-kinetic code EUTERPE computes the power transfer from the fast particles to the mode which defines the growth rate of the instability.
We show that having a fast-ion collision operator present in the simulations is required to accurately predict the non-linear saturation level of the mode. The scaling of the saturated amplitude with respect to fast-ion drag and the pitch-angle collision frequency is investigated and found to vary for different Alfvén eigenmodes.
Furthermore, we study the impact of several other actuators that might be of experimental relevance for finding operation windows that show Alfvén-eigenmode activity. Examples are the effects of a radial electric field and the composition of the background plasma (hydrogen versus helium). While growth rates are found to be reduced in helium plasmas, including a radial electric field, typically present in Wendelstein 7-X, seems to have little influence on the modes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
2 Aalto University, Aalto, Finland