Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Polymeric lipid hybrid nanoparticles (PLNs) are core–shell nanoparticles made up of a polymeric kernel and lipid/lipid–PEG shells that have the physical stability and biocompatibility of both polymeric nanoparticles and liposomes. PLNs have emerged as a highly potent and promising nanocarrier for a variety of biomedical uses, including drug delivery and biomedical imaging, owing to recent developments in nanomedicine. In contrast with other forms of drug delivery systems, PLNs have been regarded as seamless and stable because they are simple to prepare and exhibit excellent stability. Natural, semi-synthetic, and synthetic polymers have been used to make these nanocarriers. Due to their small scale, PLNs can be used in a number of applications, including anticancer therapy, gene delivery, vaccine delivery, and bioimaging. These nanoparticles are also self-assembled in a reproducible and predictable manner using a single or two-step nanoprecipitation process, making them significantly scalable. All of these positive attributes therefore make PLNs an attractive nanocarrier to study. This review delves into the fundamentals and applications of PLNs as well as their formulation parameters, several drug delivery strategies, and recent advancements in clinical trials, giving a comprehensive insight into the pharmacokinetic and biopharmaceutical aspects of these hybrid nanoparticles.

Details

Title
Polymeric Lipid Hybrid Nanoparticles (PLNs) as Emerging Drug Delivery Platform—A Comprehensive Review of Their Properties, Preparation Methods, and Therapeutic Applications
Author
Sivadasan, Durgaramani 1   VIAFID ORCID Logo  ; Muhammad Hadi Sultan 1 ; Madkhali, Osama 1   VIAFID ORCID Logo  ; Almoshari, Yosif 1 ; Thangavel, Neelaveni 2 

 Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 114, Saudi Arabia; [email protected] (M.H.S.); [email protected] (O.M.); [email protected] (Y.A.) 
 Department of Pharmaceutical Chemistry, Jazan University, Jazan 114, Saudi Arabia; [email protected] 
First page
1291
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2565488367
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.