Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Small-molecule protein kinase inhibitors are used for the treatment of various diseases. Although their effect(s) on the respective kinase are generally quite well understood, surprisingly, their interaction with membranes is only barely investigated; even though these drugs necessarily come into contact with the plasma and intracellular membranes. Using biophysical methods such as NMR, ESR, and fluorescence spectroscopy in combination with lipid vesicles, we studied the membrane interaction of the kinase inhibitors sunitinib, erlotinib, idelalisib, and lenvatinib; these drugs are characterized by medium log p values, a parameter reflecting the overall hydrophobicity of the molecules, which is one important parameter to predict the interaction with lipid membranes. While all four molecules tend to embed in a similar region of the lipid membrane, their presence has different impacts on membrane structure and dynamics. Most notably, sunitinib, exhibiting the lowest log p value of the four inhibitors, effectively influences membrane integrity, while the others do not. This shows that the estimation of the effect of drug molecules on lipid membranes can be rather complex. In this context, experimental studies on lipid membranes are necessary to (i) identify drugs that may disturb membranes and (ii) characterize drug–membrane interactions on a molecular level. Such knowledge is important for understanding the efficacy and potential side effects of respective drugs.

Details

Title
Impact of Selected Small-Molecule Kinase Inhibitors on Lipid Membranes
Author
Luck, Meike 1 ; Fischer, Markus 2 ; Werle, Maximilian 1 ; Scheidt, Holger A 2   VIAFID ORCID Logo  ; Müller, Peter 1   VIAFID ORCID Logo 

 Department of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; [email protected] (M.L.); [email protected] (M.W.) 
 Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany; [email protected] 
First page
746
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248247
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2565492507
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.