Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Predicting the trajectories of surrounding vehicles by considering their interactions is an essential ability for the functioning of autonomous vehicles. The subsequent movement of a vehicle is decided based on the multiple maneuvers of surrounding vehicles. Therefore, to predict the trajectories of surrounding vehicles, interactions among multiple maneuvers should be considered. Recent research has taken into account interactions that are difficult to express mathematically using data-driven deep learning methods. However, previous studies have only considered the interactions among observed trajectories due to subsequent maneuvers that are unobservable and numerous maneuver combinations. Thus, to consider the interaction among multiple maneuvers, this paper proposes a hierarchical graph neural network. The proposed hierarchical model approximately predicts the multiple maneuvers of vehicles and considers the interaction among the maneuvers by representing their relationships in a graph structure. The proposed method was evaluated using a publicly available dataset and a real driving dataset. Compared with previous methods, the results of the proposed method exhibited better prediction performance in highly interactive situations.

Details

Title
Vehicle Trajectory Prediction Using Hierarchical Graph Neural Network for Considering Interaction among Multimodal Maneuvers
Author
Eunsan Jo 1 ; Sunwoo, Myoungho 2 ; Lee, Minchul 2   VIAFID ORCID Logo 

 Global ADAS BU, Mando Corporation, Seongnam 13486, Korea; [email protected] 
 ACELAB Inc., Seoul 06222, Korea; [email protected] 
First page
5354
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2565702949
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.