Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The performance of classical security authentication models can be severely affected by imperfect channel estimation as well as time-varying communication links. The commonly used approach of statistical decisions for the physical layer authenticator faces significant challenges in a dynamically changing, non-stationary environment. To address this problem, this paper introduces a deep learning-based authentication approach to learn and track the variations of channel characteristics, and thus improving the adaptability and convergence of the physical layer authentication. Specifically, an intelligent detection framework based on a Convolutional-Long Short-Term Memory (Convolutional-LSTM) network is designed to deal with channel differences without knowing the statistical properties of the channel. Both the robustness and the detection performance of the learning authentication scheme are analyzed, and extensive simulations and experiments show that the detection accuracy in time-varying environments is significantly improved.

Details

Title
Enhanced Security Authentication Based on Convolutional-LSTM Networks
Author
Qiu, Xiaoying 1   VIAFID ORCID Logo  ; Sun, Xuan 1 ; Monson Hayes 2 

 College of Information Management, Beijing Information Science and Technology University, Beijing 100192, China; [email protected] 
 Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030, USA; [email protected] 
First page
5379
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2565704627
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.