Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Detecting human motion and predicting human intentions by analyzing body signals are challenging but fundamental steps for the implementation of applications presenting human–robot interaction in different contexts, such as robotic rehabilitation in clinical environments, or collaborative robots in industrial fields. Machine learning techniques (MLT) can face the limit of small data amounts, typical of this kind of applications. This paper studies the illustrative case of the reaching movement in 10 healthy subjects and 21 post-stroke patients, comparing the performance of linear discriminant analysis (LDA) and random forest (RF) in: (i) predicting the subject’s intention of moving towards a specific direction among a set of possible choices, (ii) detecting if the subject is moving according to a healthy or pathological pattern, and in the case of discriminating the damage location (left or right hemisphere). Data were captured with wearable electromagnetic sensors, and a sub-section of the acquired signals was required for the analyses. The possibility of detecting with which arm (left or right hand) the motion was performed, and the sensitivity of the MLT to variations in the length of the signal sub-section were also evaluated. LDA and RF prediction accuracies were compared: Accuracy improves when only healthy subjects or longer signals portions are considered up to 11% and at least 10%, respectively. RF reveals better estimation performance both as intention predictor (on average 59.91% versus the 62.19% of LDA), and health condition detector (over 90% in all the tests).

Details

Title
Intention Prediction and Human Health Condition Detection in Reaching Tasks with Machine Learning Techniques
Author
Ragni, Federica 1   VIAFID ORCID Logo  ; Archetti, Leonardo 1 ; Roby-Brami, Agnès 2   VIAFID ORCID Logo  ; Amici, Cinzia 1   VIAFID ORCID Logo  ; Saint-Bauzel, Ludovic 2   VIAFID ORCID Logo 

 Department of Mechanical and Industrial Engineering, University of Brescia, via Branze, 38, 25123 Brescia, Italy; [email protected] (F.R.); [email protected] (L.A.) 
 ISIR (Institute of Intelligent Systems and Robotics), UMR CNRS 7222, AGATHE Team INSERM U 1150, Sorbonne Université, 75005 Paris, France; [email protected] (A.R.-B.); [email protected] (L.S.-B.) 
First page
5253
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2565704951
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.