Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aim: To determine whether an AI model and single sensor measuring acceleration and ECG could model cognitive and physical fatigue for a self-paced trail run. Methods: A field-based protocol of continuous fatigue repeated hourly induced physical (~45 min) and cognitive (~10 min) fatigue on one healthy participant. The physical load was a 3.8 km, 200 m vertical gain, trail run, with acceleration and electrocardiogram (ECG) data collected using a single sensor. Cognitive load was a Multi Attribute Test Battery (MATB) and separate assessment battery included the Finger Tap Test (FTT), Stroop, Trail Making A and B, Spatial Memory, Paced Visual Serial Addition Test (PVSAT), and a vertical jump. A fatigue prediction model was implemented using a Convolutional Neural Network (CNN). Results: When the fatigue test battery results were compared for sensitivity to the protocol load, FTT right hand (R2 0.71) and Jump Height (R2 0.78) were the most sensitive while the other tests were less sensitive (R2 values Stroop 0.49, Trail Making A 0.29, Trail Making B 0.05, PVSAT 0.03, spatial memory 0.003). The best prediction results were achieved with a rolling average of 200 predictions (102.4 s), during set activity types, mean absolute error for ‘walk up’ (MAE200 12.5%), and range of absolute error for ‘run down’ (RAE200 16.7%). Conclusions: We were able to measure cognitive and physical fatigue using a single wearable sensor during a practical field protocol, including contextual factors in conjunction with a neural network model. This research has practical application to fatigue research in the field.

Details

Title
Predicting Fatigue in Long Duration Mountain Events with a Single Sensor and Deep Learning Model
Author
Russell, Brian 1   VIAFID ORCID Logo  ; McDaid, Andrew 2 ; Toscano, William 3 ; Hume, Patria 4   VIAFID ORCID Logo 

 Sports Performance Research Institute, Auckland University of Technology, Auckland 0632, New Zealand; [email protected]; National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA 94043, USA; [email protected] 
 Department of Mechanical Engineering, University of Auckland, Auckland 1142, New Zealand; [email protected] 
 National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA 94043, USA; [email protected] 
 Sports Performance Research Institute, Auckland University of Technology, Auckland 0632, New Zealand; [email protected] 
First page
5442
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2565707378
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.