Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To date, SARS-CoV-2 pandemic has caused more than 188 million infections and 4.06 million deaths worldwide. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein has been regarded as an important target for vaccine and therapeutics development because it plays a key role in binding the human cell receptor ACE2 that is required for viral entry. However, it is not easy to detect RBD in Western blot using polyclonal antibody, suggesting that RBD may form a complicated conformation under native condition and bear rare linear epitope. So far, no linear epitope on RBD is reported. Thus, a monoclonal antibody (mAb) that recognizes linear epitope on RBD will become valuable. In the present study, an RBD-specific rabbit antibody named 9E1 was isolated from peripheral blood mononuclear cells (PBMC) of immunized rabbit by RBD-specific single B cell sorting and mapped to a highly conserved linear epitope within twelve amino acids 480CNGVEGFNCYFP491 on RBD. 9E1 works well in Western blot on S protein and immunohistochemistry on the SARS-CoV-2 infected tissue sections. The results demonstrated that 9E1 can be used as a useful tool for pathological and functional studies of SARS-CoV-2.

Details

Title
Rabbit Monoclonal Antibody Specifically Recognizing a Linear Epitope in the RBD of SARS-CoV-2 Spike Protein
Author
Hong, Junping 1 ; Wang, Qian 1 ; Wu, Qian 1 ; Chen, Junyu 2 ; Wang, Xijing 1 ; Wang, Yingbin 2 ; Chen, Yixin 1   VIAFID ORCID Logo  ; Xia, Ningshao 1   VIAFID ORCID Logo 

 National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, China; [email protected] (J.H.); [email protected] (Q.W.); [email protected] (Q.W.); [email protected] (X.W.); [email protected] (N.X.); State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; [email protected] 
 State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; [email protected] 
First page
829
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
2076393X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2565727086
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.