Abstract
In a real Hilbert space, let GSVI and CFPP represent a general system of variational inequalities and a common fixed point problem of a countable family of nonexpansive mappings and an asymptotically nonexpansive mapping, respectively. In this paper, via a new subgradient extragradient implicit rule, we introduce and analyze two iterative algorithms for solving the monotone bilevel equilibrium problem (MBEP) with the GSVI and CFPP constraints, i.e., a strongly monotone equilibrium problem over the common solution set of another monotone equilibrium problem, the GSVI and the CFPP. Some strong convergence results for the proposed algorithms are established under the mild assumptions, and they are also applied for finding a common solution of the GSVI, VIP, and FPP, where the VIP and FPP stand for a variational inequality problem and a fixed point problem, respectively.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Shanghai Normal University, Department of Mathematics, Shanghai, China (GRID:grid.412531.0) (ISNI:0000 0001 0701 1077)





