Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A deep-fried dough/batter food (magwinya) consumed across different age groups and social strata in South Africa was investigated in this study for digestibility and estimated glycaemic index (eGI). In this research, we investigated the influence of bran type—wheat bran (WB) and oat bran (OB), and concentration (0–20% w/w) on the starch digestibility and eGI of magwinya. Rapidly available glucose (RAG) of control fried dough (60.31 g/100 g) was 33% less than fried batter (90.07 g/100 g). There was a significant reduction in RAG and an increase in slowly available (SAG) and unavailable glucose (UG) content of the fried products with OB and WB addition. The highest SAG content was observed in WB fried dough. Control fried batter had the highest eGI value (80.02) and control fried dough had medium eGI value (58.11). WB fried dough, fried batter, and OB fried dough were categorised as medium GI foods at eGI range of 56.46–58.39, 65.93–68.84 and 56.34–57.27, respectively. The eGI values of OB fried batter ranged from 73.57 to 80.03 and were thus classified as high GI foods. UG showed significant correlation with eGI (r = −0.892, −0.973, p < 0.01) and fat content (r = −0.590, −0.661, p < 0.01) for WB and OB fried products. These results reveal that ingredient modification through bran enrichment is effective for the regulation of starch digestion and reduction of eGI of deep-fried dough/batter foods.

Details

Title
In Vitro Starch Digestibility and Glycaemic Index of Fried Dough and Batter Enriched with Wheat and Oat Bran
Author
Onipe, Oluwatoyin O 1   VIAFID ORCID Logo  ; Beswa, Daniso 2 ; Afam I O Jideani 1   VIAFID ORCID Logo 

 Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa; [email protected] 
 Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein 2028, South Africa; [email protected] 
First page
1374
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2568148917
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.