Abstract

Absolute risks of stroke are typically estimated using measurements of cardiovascular disease risk factors recorded at a single visit. However, the comparative utility of single versus sequential risk factor measurements for stroke prediction is unclear. Risk factors were recorded on three separate visits on 13,753 individuals in the prospective China Kadoorie Biobank. All participants were stroke-free at baseline (2004–2008), first resurvey (2008), and second resurvey (2013–2014), and were followed-up for incident cases of first stroke in the 3 years following the second resurvey. To reflect the models currently used in clinical practice, sex-specific Cox models were developed to estimate 3-year risks of stroke using single measurements recorded at second resurvey and were retrospectively applied to risk factor data from previous visits. Temporal trends in the Cox-generated risk estimates from 2004 to 2014 were analyzed using linear mixed effects models. To assess the value of more flexible machine learning approaches and the incorporation of longitudinal data, we developed gradient boosted tree (GBT) models for 3-year prediction of stroke using both single measurements and sequential measurements of risk factor inputs. Overall, Cox-generated estimates for 3-year stroke risk increased by 0.3% per annum in men and 0.2% per annum in women, but varied substantially between individuals. The risk estimates at second resurvey were highly correlated with the annual increase of risk for each individual (men: r = 0.91, women: r = 0.89), and performance of the longitudinal GBT models was comparable with both Cox and GBT models that considered measurements from only a single visit (AUCs: 0.779–0.811 in men, 0.724–0.756 in women). These results provide support for current clinical guidelines, which recommend using risk factor measurements recorded at a single visit for stroke prediction.

Details

Title
Utility of single versus sequential measurements of risk factors for prediction of stroke in Chinese adults
Author
Chun, Matthew 1 ; Clarke, Robert 2 ; Zhu, Tingting 3 ; Clifton, David 4 ; Bennett, Derrick 2 ; Chen, Yiping 5 ; Guo, Yu 6 ; Pei, Pei 6 ; Lv, Jun 7 ; Yu Canqing 7 ; Yang, Ling 2 ; Li, Liming 7 ; Chen, Zhengming 8 ; Cairns, Benjamin J 2 ; Chen Junshi 9 ; Collins, Rory 2 ; Peto, Richard 2 ; Walters, Robin 2 ; Avery, Daniel 2 ; Boxall, Ruth 2 ; Bragg, Fiona 2 ; Burgess, Sushila 2 ; Chan Kahung 2 ; Chang, Yumei 2 ; Du Huaidong 2 ; Fairhurst-Hunter Zammy 2 ; Gilbert, Simon 2 ; Hacker, Alex 2 ; Hariri Parisa 2 ; Holmes, Michael 2 ; Andri, Iona 2 ; Im, Becky 2 ; Kakkoura, Maria 2 ; Kartsonaki Christiana 10 ; Kerosi Rene 2 ; Lin, Kuang 2 ; Millwood Iona 2 ; Nie Qunhua 2 ; Pozaricki Alfred 2 ; Ryder, Paul 2 ; Sansome Sam 2 ; Schmidt, Dan 2 ; Sohoni Rajani 2 ; Stevens, Rebecca 2 ; Turnbull, Iain 2 ; Wang, Lin 2 ; Wright, Neil 2 ; Yang, Xiaoming 2 ; Pang, Yao 2 ; Han, Xiao 8 ; Hou, Can 8 ; Liu, Chao 8 ; Li, Chun 8 ; Pang Zengchang 11 ; Gao Ruqin 11 ; Li Shanpeng 11 ; Wang, Shaojie 11 ; Liu, Yongmei 11 ; Du Ranran 11 ; Cheng, Liang 11 ; Tian Xiaocao 11 ; Zhang, Hua 11 ; Zhai Yaoming 11 ; Feng, Ning 11 ; Sun, Xiaohui 11 ; Li, Feifei 11 ; Lv Silu 12 ; Wang Junzheng 12 ; Hou, Wei 12 ; Zou Mingyuan 13 ; Yan Shichun 13 ; Zhou, Xue 13 ; Yu, Bo 14 ; Li, Yanjie 14 ; Xu Qinai 14 ; Kang, Quan 14 ; Guo Ziyan 14 ; Hu Ximin 15 ; Chen, Jinyan 15 ; Wang, Xiaohuan 15 ; Weng, Min 16 ; Guo Zhendong 16 ; Wu Shukuan 16 ; Li, Yilei 16 ; Li, Huimei 16 ; Wu, Ming 17 ; Zhou, Yonglin 17 ; Zhou Jinyi 17 ; Tao Ran 17 ; Yang, Jie 17 ; Su, Jian 17 ; Liu, Fang 18 ; Zhang, Jun 18 ; Hu Yihe 18 ; Lu, Yan 18 ; Ma, Liangcai 18 ; Tang Aiyu 18 ; Hua Yujie 18 ; Jin Jianrong 18 ; Liu Jingchao 18 ; Tang Zhenzhu 19 ; Chen Naying 19 ; Liu, Duo 19 ; Li Mingqiang 20 ; Meng Jinhuai 20 ; Pan, Rong 20 ; Jiang Qilian 20 ; Lan Jian 20 ; Liu, Yun 20 ; Wei Liuping 20 ; Zhou, Liyuan 20 ; Chen, Ningyu 20 ; Wang, Ping 20 ; Meng Fanwen 20 ; Qin Yulu 20 ; Wang, Sisi 20 ; Wu, Xianping 21 ; Zhang Ningmei 21 ; Chen, Xiaofang 21 ; Zhong Xunfu 21 ; Liu Jiaqiu 21 ; Sun, Qiang 21 ; Luo Guojin 22 ; Li, Jianguo 22 ; Ge Pengfei 23 ; Ren Xiaolan 23 ; Dong Caixia 23 ; Zhang, Hui 24 ; Enke, Mao 24 ; Li, Zhongxiao 24 ; Wang, Tao 24 ; Zhang, Xi 24 ; Zhang, Ding 25 ; Zhou, Gang 25 ; Feng Shixian 25 ; Chang, Liang 25 ; Fan, Lei 25 ; Gao Yulian 26 ; He Tianyou 26 ; Sun Huarong 26 ; Pan, He 26 ; Hu, Chen 26 ; Zhang Xukui 26 ; Yu, Min 27 ; Hu Ruying 27 ; Wang, Hao 27 ; Gong Weiwei 27 ; Wang, Meng 27 ; Wang, Chunmei 28 ; Zhang, Xiaoyi 28 ; Xie Kaixu 28 ; Chen, Lingli 28 ; Pan Dongxia 28 ; Gu Qijun 28 ; Huang Yuelong 29 ; Chen Biyun 29 ; Li, Yin 29 ; Liu, Huilin 29 ; Fu Zhongxi 29 ; Xu Qiaohua 29 ; Xu, Xin 30 ; Zhang, Hao 30 ; Long Huajun 30 ; Zhang, Libo 30 

 University of Oxford, Clinical Trial Service Unit and Epidemiological Studies, Nuffield Department of Population Health, Oxford, UK (GRID:grid.4991.5) (ISNI:0000 0004 1936 8948); University of Oxford, Department of Engineering Science, Oxford, UK (GRID:grid.4991.5) (ISNI:0000 0004 1936 8948) 
 University of Oxford, Clinical Trial Service Unit and Epidemiological Studies, Nuffield Department of Population Health, Oxford, UK (GRID:grid.4991.5) (ISNI:0000 0004 1936 8948) 
 University of Oxford, Department of Engineering Science, Oxford, UK (GRID:grid.4991.5) (ISNI:0000 0004 1936 8948) 
 University of Oxford, Department of Engineering Science, Oxford, UK (GRID:grid.4991.5) (ISNI:0000 0004 1936 8948); Oxford-Suzhou Centre for Advanced Research, Suzhou, China (GRID:grid.4991.5) 
 University of Oxford, Clinical Trial Service Unit and Epidemiological Studies, Nuffield Department of Population Health, Oxford, UK (GRID:grid.4991.5) (ISNI:0000 0004 1936 8948); University of Oxford, Medical Research Council, Population Health Research Unit, Oxford, UK (GRID:grid.4991.5) (ISNI:0000 0004 1936 8948) 
 Chinese Academy of Medical Sciences, Beijing, China (GRID:grid.506261.6) (ISNI:0000 0001 0706 7839) 
 Peking University Health Sciences Center, Department of Epidemiology and Biostatistics, School of Public Health, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319); Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319) 
 University of Oxford, Medical Research Council, Population Health Research Unit, Oxford, UK (GRID:grid.4991.5) (ISNI:0000 0004 1936 8948) 
 China National Center For Food Safety Risk Assessment, Beijing, China (GRID:grid.464207.3) (ISNI:0000 0004 4914 5614) 
10  University of Oxford, Clinical Trial Service Unit and Epidemiological Studies, Nuffield Department of Population Health, Oxford, UK (GRID:grid.4991.5) (ISNI:0000 0004 1936 8948); Oxford-Suzhou Centre for Advanced Research, Suzhou, China (GRID:grid.4991.5) 
11  Qingdao CDC, Qingdao, China (GRID:grid.4991.5) 
12  Licang CDC, Qingdao, China (GRID:grid.4991.5) 
13  Heilongjiang CDC, Harbin, Heilongjiang, China (GRID:grid.4991.5) 
14  Nangang CDC, Nangang District, Harbin, Heilongjiang, China (GRID:grid.4991.5) 
15  Hainan CDC, Haikou, China (GRID:grid.4991.5) 
16  Meilan CDC, Haikou, China (GRID:grid.4991.5) 
17  Jiangsu CDC, Nanjing, China (GRID:grid.4991.5) 
18  Suzhou CDC, Suzhou, China (GRID:grid.4991.5) 
19  Guangxi CDC, Nanning, China (GRID:grid.418332.f) 
20  Liuzhou CDC, Liuzhou, China (GRID:grid.418332.f) 
21  Sichuan CDC, Chengdu, China (GRID:grid.418332.f) 
22  Pengzhou CDC, Pengzhou, China (GRID:grid.418332.f) 
23  Gansu CDC, Lanzhou, China (GRID:grid.418332.f) 
24  Maiji CDC, Maiji, Tianshui, China (GRID:grid.418332.f) 
25  Henan CDC, Zhengzhou, China (GRID:grid.418332.f) 
26  Huixian CDC, Huixian, China (GRID:grid.418332.f) 
27  Zhejiang CDC, Hanzhou Zhejiang, China (GRID:grid.418332.f) 
28  Tongxiang CDC, Tongxiang, China (GRID:grid.418332.f) 
29  Hunan CDC, Changsha, China (GRID:grid.418332.f) 
30  Liuyang CDC, Liuyang, China (GRID:grid.418332.f) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2568393951
Copyright
© The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.