It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Batik is an Indonesian cultural heritage that was recognized by UNESCO in 2009. One of the famous batik producing regions in Indonesia is Pekalongan City, Central Java. Pekalongan Batik has a distinctive characteristic compared to other regions, namely from the aspect of color and motif. Pekalongan batik uses bright colors and flora motifs. However, there are some batik craftsmen who still use dark colors. Identify Pekalongan’s typical batik motifs become an obstacle for tourists that are visiting Indonesia. There needs to be an automatic identification system to recognize Pekalongan Batik motifs. The automatic identification system of batik images can contribute to the development of technology in the field of artificial intelligence. This research was conducted by collecting image data taken through observation, interviews and literature review. The image data obtained are four batik motifs. 5 images will be taken from each motif and will be implemented into the system using Matlab R2014a. The next process is feature extraction using the Gray Level Co-Occurrence Matrix (GLCM) method to get information in the batik image. The author then identifies image using the Backpropagation method to obtain the epoch value, learning rate, and accuracy value based on the identification process. The tested system obtained the highest accuracy of 91.2% with epoch 100 and learning rate 0.03 on Sogan batik, 89.6% accuracy with epoch 100 and learning rate 0.02 on Jlamprang batik. 87.2% accuracy was obtained from Cap Kombinasi batik and Tiga Negeri batik with epoch 100, the learning rate was 0.01 and 0.04 respectively. The results of identifying images of Pekalongan batik can be implemented in a more interactive application.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Electrical Engineering, Universitas Ahmad Dahlan
2 Magister of Informatics Technology, Universitas Ahmad Dahlan